
Flask: Staged Functional Programming for Sensor Networks

Geoffrey Mainland Greg Morrisett Matt Welsh
Harvard School of Engineering and Applied Sciences

{mainland,greg,mdw}@eecs.harvard.edu

Abstract
Severely resource-constrained devices present a confounding chal-
lenge to the functional programmer: we are used to having powerful
abstraction facilities at our fingertips, but how can we make use of
these tools on a device with an 8- or 16-bit CPU and at most tens of
kilobytes of RAM? Motivated by this challenge, we have developed
Flask, a domain specific language embedded in Haskell that brings
the power of functional programming to sensor networks, collec-
tions of highly resource-constrained devices. Flask consists of a
staging mechanism that cleanly separates node-level code from the
meta-language used to generate node-level code fragments; syn-
tactic support for embedding standard sensor network code; a re-
stricted subset of Haskell that runs on sensor networks and con-
strains program space and time consumption; a higher-level “data
stream” combinator library for quickly constructing sensor network
programs; and an extensible runtime that provides commonly-used
services.

We demonstrate Flask through several small code examples as
well as a compiler that generates node-level code to execute a
network-wide query specified in a SQL-like language. We show
how using Flask ensures constraints on space and time behavior.
Through microbenchmarks and measurements on physical hard-
ware, we demonstrate that Flask produces programs that are effi-
cient in terms of CPU and memory usage and that can run effec-
tively on existing sensor network hardware.

Categories and Subject Descriptors D.3.3 [Software]: Program-
ming Languages

General Terms Languages, Design

Keywords Meta programming

1. Introduction
Sensor networks consist of ensembles of small, cheap devices
whose power lies in numbers. The TelosB mote, a typical mem-
ber of this class of devices, has a 16-bit TI MSP430 CPU, 10K
of RAM, 48K of program flash memory and a 250 kbps 802.15.4
radio. The vision for sensor networks is that these devices can be
deployed cheaply and in large numbers, facilitating the collection
of data on a scale that was simply not possible before. The chal-
lenge is to develop the algorithms and software necessary to realize

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

this goal. Flask is a domain specific language embedded in Haskell
that seeks to address this challenge by making the type of high-
level, reusable abstractions commonly developed in the functional
programming community available in the sensor network domain.

Flask’s programming model inspired by the large body of work
on Functional Reactive Programming (FRP) (Elliott and Hudak
1997; Nilsson et al. 2002; Pembeci et al. 2002; Hudak et al. 2003)
Unfortunately, this work does not translate directly to the sensor
network domain because sensor nodes simply do not have enough
RAM or ROM to run a full Haskell environment—GHC compiles
“Hello, world!” to a binary weighing in at more than 350K, and the
Hugs runtime is over 500K. Even the experimental jhc compiler
produces an 8K binary for this same program, never mind the heap
space required for even a moderately complex application. To target
a TelosB-class device, it is necessary to forgo conveniences such as
garbage collection and closure allocation, but only for code run-
ning on the nodes themselves. Flask provides a staging mechanism
that maintains a clean separation between node-level code and the
meta-language used to generate node-level code fragments, so pro-
grammers can still use the full power of Haskell as a meta-language
when programming sensor networks. Node-level code can be writ-
ten in a language called Red, which is syntactically equivalent to
Haskell but disallows closures and recursive data types, thereby
eliminating arbitrary allocation. The combination of staging plus a
restricted object language form the basis for our approach to adapt-
ing the ideas from FRP to work in the sensor network domain.

In addition to a staging mechanism and Red, Flask consists of
general syntactic support for embedding standard sensor network
code; a higher-level “data stream” combinator library for quickly
constructing sensor network programs; and an extensible runtime
that provides commonly-used services. Although Flask is geared
towards streaming data applications, it also provides facilities for
building higher-level abstractions, which we use in Section 6 to
write a concise, network-wide fold operator that then forms the
basis for a compiler from a SQL-like query language to native
sensor network binaries. The version of Flask detailed in this paper
is a complete rewrite of an earlier system, written in OCaml, that
was the basis for previous unpublished work.

Flask’s contributions are as follows:

• A design for embedding object languages in Haskell: Flask
builds on our previous work on quasiquotation (Mainland 2007)
to provide quasiquoting for both nesC (Gay et al. 2003), a C-
based language commonly used for sensor network program-
ming, and Red. This minimizes the syntactic burden of embed-
ding object languages in Haskell. We also show how to leverage
the Haskell type system to type object language terms.

• Seamless integration of existing sensor network code into a
functional programming environment: Flask places nesC on
equal footing with Red in that signal combinators such as map
can apply a nesC function to signal as easily as applying a Red

function. Anywhere a programmer can write Red, he can also
write nesC.

• Red, a restricted subset of Haskell that has a well-defined
semantic relationship to its parent language and compiles
to efficient node-level code: Red is syntactically identical to
Haskell 98, although it lacks support for a few Haskell 98 fea-
tures such as type classes. Additionally, the Red type-checker
constrains Red code so that both data types and functions are
non-recursive and so that closures cannot be allocated. There-
fore, all Red functions are total and allocation is bounded. In
this setting, call-by-value evaluation is equivalent to call-by-
need evaluation, so we choose the former for efficiency rea-
sons although Haskell programmers can still informally reason
about Red code as if it obeyed the same evaluations semantics
as Haskell. The constraints imposed by the Red type checker
also ensure that Red can be compiled to efficient sensor net-
work code, as we show in Section 7.

The rest of this paper is organized as follows. We begin in Sec-
tion 2 by providing background and motivating our solution. Sec-
tion 3 gives an overview of Flask and its design. In Section 4 we
discuss the implementation of Flask’s combinators, the Red com-
pilation strategy, and Flask’s interface to nesC. We next evaluate
Flask in three key areas; we evaluate Flask’s usefulness as a sensor
network programming language via a case study of a geophysi-
cal monitoring system implemented in Flask in Section 5; in Sec-
tion 6 we show that Flask is suitable for building high-level ab-
stractions by developing a compiler that translates statements in a
SQL-like language to executable code; and in Section 7 we present
microbenchmarks comparing Flask programs to hand-written nesC
variants and describe a Flask program running on a sensor network
testbed consisting of approximately 160 TelosB motes. Section 8
describes related work, and Section 9 presents future work and con-
cludes.

2. Background and Motivation
Sensor networks present the tantalizing possibility of building bet-
ter, cheaper scientific instruments that can collect data that was
previously impractical to acquire. One of the authors has worked
closely with vulcanologists to deploy sensor networks that col-
lected real-world seismic data at Reventador (Werner-Allen et al.
2006) and Volcán Tungurahua (Werner-Allen et al. 2005a), both ac-
tive volcanoes in Ecuador. While the results from these trials were
promising, the associated software required several man-years of
effort and resulted in a system that was tied to a particular deploy-
ment. Part of the problem is the tools available to would-be sen-
sor network programmers; most applications are written in nesC, a
component-based dialect of C, and involve a lot of low-level event-
driven code. Even more challenging, programmers must grapple
not only with the constraints imposed on individual devices, but
they must somehow get these devices to work together using a low
bit-rate, unreliable radio connection.

When forced to spend most of one’s time staring at leaves, it
is particularly challenging to see the forest, and a natural conse-
quence is that many sensor network programs are tailored to spe-
cific deployments and contain an abundance of application-specific
code rather than reusable abstractions. The sensor network com-
munity recognizes this challenge and has produced a number of
systems that seek to relieve the pain of programming sensor net-
works (Madden et al. 2005; Bakshi et al. 2005b; Cheong et al.
2003; Whitehouse et al. 2005; Kothari et al. 2007; Newton et al.
2007; Levis et al. 2005; Sorber et al. 2007; Gnawali et al. 2006).
Many of these tools focus on particular problem domains, limiting
their generality, or only run in simulation or on PDA-class devices,
limiting their applicability.

Flask is targeted at an emerging class of sensor network applica-
tions that deal primarily with (possibly) high-rate streaming data, of
which the Reventador deployment is a prime example. Other exam-
ples include structural monitoring (Xu et al. 2004) and acoustic sig-
nal processing (Ali et al. 2007). As such, Flask is designed around
a stream-based data model in which data originates from sensors or
incoming radio packets and flows through a series of operators that
can transform, filter, store or transmit data. FRP’s dataflow model
and the high-level, re-usable abstractions it provides are a natural
fit for this domain. We show the power of these types of abstrac-
tions in Section 6. Using a functional language also tends to reduce
the amount code required to express program logic, a claim that is
supported by our experience using Flask, and which we describe in
Section 5. The FP approach of defining small, reusable and com-
posable combinators, which we follow in Section 3, is one of driv-
ing forces behind this reduction in code size, and we used it to our
advantage throughout the development of both Flask and the ap-
plications we describe in the rest of the paper. Purity also allows
Flask to potentially take advantage of algebraic optimizations that
are not valid for impure code. In light of these advantages, it was
natural for us to ask how one can augment an existing language,
in particular Haskell, with enough mechanism so that we can bring
the power of functional programming to sensor networks.

The development of Flask was driven by three observations.
First, there will always be devices with severely limited capabili-
ties similar to those of the aforementioned TelosB mote; they will
simply become smaller and cheaper. If we can program these de-
vices effectively, then as they become smaller and cheaper they will
also become more practical to deploy in large numbers. Thus the
problem of programming ensembles of TelosB-like devices will not
disappear or become obsolete due to advances in hardware. Second,
for one to have any hope of running functional programs on such re-
source constrained devices, it is clear that the code that runs on the
sensor network hardware and the code that expresses the reactive
part of programs must be separately staged (Taha 1999; Taha and
Sheard 2000). This separation between the meta-language, which
in our case is Haskell, and the object language, which can be ei-
ther nesC or a restricted subset of Haskell called Red, enables
Flask to tightly constrain the run-time behavior of sensor network
code while allowing the programmer to stitch together functional-
ity using the full power of Haskell. Third, the code that makes use
of the features functional programmers take for granted—higher-
order functions, closures, polymorphism, etc.—is exactly the code
that does the stitching. By simultaneously paring down the object
language and offering powerful “stitching” combinators, Flask en-
ables functional programming on sensor networks.

3. Overview
We begin by motivating and justifying the basic design of Flask.
Our discussion is oriented around a simplified version of the earth-
quake detection algorithm used by Werner-Allen et al. (2006). Al-
though simplified, this application demonstrates the main features
of Flask and also represents the core logic of the more complex vol-
cano monitoring application described in Section 5. We begin by
writing the detector using Arrowized FRP (AFRP), as embodied
in the Yampa Haskell library (Nilsson et al. 2002). Although de-
vice constraints prevent us from running the program we develop
here on a TelosB-class sensor network, this exercise shows how
one might write a sensor network program in a functional style. We
subsequently use Flask to re-express this program in a manner that
allows it to be efficiently executed on a real sensor network.

3.1 Sample Application: Earthquake Detection in FRP
The main logic of the earthquake detection application is shown
in Figure 1. The detection algorithm works by first separately

Detection Event
get

sample

high gain
EWMA

low gain
EWMA

compute
ratio

val >
THRESH?

Figure 1: Conceptual depiction of earthquake detection.

applying high-pass and low-pass filters to the input signal. If the
ratio between the values output by the high-pass and low-pass
filters exceed a threshold, then a detection event has occurred.

It is straightforward to write this detector using Arrowized FRP
(AFRP). AFRP uses the SF type to represent Signal Functions,
functions from one continuous stream of time-varying values to
another continuous stream of time-varying values. Also provided
is the Event type, which models a discrete-time signal. The detect
function takes parameters for the high- and low-pass filters and
a detection threshold and returns a stream function from seismic
readings to earthquake detection events. It has the following type:

detect :: Double → Double → Double
→ SF Double (Event ())

Implementing the high- and low-pass filters requires remember-
ing some state representing the past history of the seismic signal.
These filters can be implemented using an exponentially weighted
moving average (EWMA) which computes the moving average of
a value from past observations by weighting the observation at time
t − n by the factor αn for 0 < α < 1. An EWMA estimate is up-
dated with a new value by multiplying the old moving average by
1− α and adding the new value weighted by the factor α. To write
an ewma signal function, we need to lift a pure function that com-
putes a new moving average when given both the previous output
and an input; this function should have type β → α → β. Yampa
provides such a combinator, which also takes an initial “previous”
value:

sscan :: (β → α → β) → β → SF α β

With sscan we can write our ewma signal function as follows:

ewma :: Double → SF Double Double
ewma α =

sscan (λxold x → α ∗ x + (1− α) ∗ xold)
x0

Here x0 is a value appropriate for the initial state of the ewma filter,
e.g., the value output by a quiescent seismometer.

Before we can finish writing detect, we need some additional
basic arrow combinators to lift a pure function to a signal function;
compose signal functions; and pair the results of applying two
signal functions.

pure :: (a → b) → SF a b
(>>>) :: SF a b → SF b c → SF a c
(&&&) :: SF a b → SF a c → SF a (b, c)

We also need one more Yampa-specific signal function that
performs edge detection on a signal of Boolean values:

edge :: SF Bool (Event ())

With these functions in hand, the translation from Figure 1 to
Haskell is quite direct:

detect :: Double → Double → Double
→ SF Double (Event ())

detect low high thresh =
ewma high &&& ewma low
>>>
pure (λ(hi, lo) → hi / lo > thresh)
>>>
edge

In fact, most sensor network applications follow a common
pattern: collect data, perhaps perform some simple computation
or filtering, and then forward the collected data over a low-power
radio back to a base station for further analysis. The forwarding
step often involves a routing protocol which forms a spanning tree
connecting the sensor network nodes to the base station via a multi-
hop path. Sometimes locally-connected values are not forwarded
immediately, but held for a period of time so they can be aggregated
with data from other nodes before being sent upstream, thus saving
bandwidth and energy. While not universal, this class of application
is widespread enough in the sensor network domain that it makes
sense to focus on providing powerful tools for programming in this
style.

Using FRP’s built-in combinators, we have implemented the
core logic of an earthquake detector in a very small amount of code.
Furthermore, the program logic is evident from the source text and
closely follows our conceptual depiction of the detection algorithm.
Despite these advantages, there is one glaring problem with using
FRP directly to program sensor networks: nodes just don’t have the
necessary horsepower or memory. However, there is hope.

3.2 Overview of Flask
Notice that in our detect function the flow of data through the pro-
gram that we arranged by applying the &&&, >>>, and pure com-
binators does not change during program execution. It is the point-
wise manipulation of values that must be executed dynamically; the
data flow configuration is static. Flask exploits this observation by
explicitly staging the static and dynamic behavior of dataflow pro-
grams (Taha 1999). Haskell serves as Flask’s meta language, and its
full power is available for expressing how data flow graphs can be
constructed using FRP-style combinators. Flask also requires that
point-wise manipulation of signal values is always done in a re-
stricted object-language. Because the dynamic behavior of the pro-
gram is expressed only through a restricted object language, Flask
programs can run on even highly resource-constrained devices like
the TelosB mote.

The arrow abstraction on which AFRP is based (Hughes 2000,
2004) does not make a distinction between meta and object level
programs, which prevents us from using it directly in Flask; the
Arrow class method pure, of which we have seen a special case,
has type Arrow a ⇒ (b → c) → a b c, which allows one to
lift any pure Haskell function to operate point-wise over signals. In
Flask, only object level functions can be lifted to operate on signals,
so the Arrow class is not what we want. However, we do reuse some
of the good ideas from arrows which we note as they are developed.

An obvious choice for an object language is nesC (Gay et al.
2003). Not only is it restricted enough to run on sensor nodes,
but it allows us to interface with a large body of existing nesC
and TinyOS (Hill et al. 2000) code into which the sensor network
community has invested significant effort. For example, the detect
function needs a data source. In our case this data source is a custom
built analog-to-digital converter with a driver written in nesC. It
would be both impractical and unnecessary to rewrite this body of

code. Thus, providing nesC as an object language lets us easily
integrate the existing driver into Flask.

We address the syntactic challenge of mixing nesC and Haskell
code using GHC’s quasiquoting facility (Mainland 2007). Quasiquot-
ing allows nesC to be written directly in a Haskell source file us-
ing standard nesC syntax instead of forcing the programmer to
construct a Haskell representation of the corresponding abstract
syntax. We provide a quasiquoter for nesC functions, cfun, that au-
tomatically performs the translation from nesC concrete syntax to
abstract syntax when a Haskell file is compiled. Values that exist at
the meta level can also be spliced into object level code using an-
tiquoting. Returning to our detect example, we use our quasiquoter
cfun to write a staged version of the pure function that tests the ratio
between the high- and low-pass filters as follows:

thresh test thresh =
[$cfun | bool test(double hi, double lo) {

return hi/lo > $flo:thresh;
}

|]
Not only do we make a clear distinction between the meta level
function thresh test and the object level function test, but also
between the dynamic values hi and lo and the static value thresh.
Because thresh is static—it does not change as the detection pro-
gram runs—it exists at the meta level as a parameter to the Haskell
function f. The syntax $flo:thresh tells the quasiquoter to splice
in the meta level floating point variable thresh as a constant in the
quoted nesC function. We elaborate on quasiquoting in Section 4.

3.3 Red: A Restricted Object Language
While it is necessary to directly use nesC as an object language
to provide access to the large body of existing sensor network
code, it is still inconvenient in many respects. For example, nesC’s
lack of support for tuples and algebraic data types is particularly
painful in the dataflow setting, e.g., the &&& combinator naturally
wants to use a tuple. In general, nesC is not a good fit as an object
language for FRP-style programming. To help bridge the semantic
gap between functional programming and low-level sensor network
code, we provide a second object language, called Red, that is
syntactically equivalent to Haskell 98.

By default, the Red type checker enforces three additional con-
straints over standard Haskell 98: recursive data types are disal-
lowed, closures may not be allocated, and recursive functions are
disallowed. This ensures that Red code is terminating and can only
perform bounded allocation. Because functions written in Red are
total, they can be implemented using a call-by-value evaluation
strategy, but the programmer can reason about them as if they
were evaluated using the same call-by-need strategy used for the
meta language, Haskell. By using Red, the programmer gets even
stronger guarantees than if he were to use nesC, which provides
an unrestricted “escape hatch” back into an effectful, unbounded
world. Given terminating object code that performs only bounded
allocation, Flask combinators will only produce object terms that
perform bounded allocation and terminate. Another advantage of
using Red is that it opens up a number of opportunities for opti-
mization; nesC code can have side effects, making algebraic opti-
mizations and equational reasoning difficult.

Using Red, we can rewrite the staged version of our threshold
test as follows:

thresh test :: Double → Exp
thresh test thresh val =

[$exp | λ(hi, lo) → hi / lo > $flo : thresh |]
In addition to staging all computations by explicitly separating

the object and meta levels, Flask’s design differs from FRP in its

constant :: N α → S β → S α
map :: N (α → β) → S α → S β
filter :: N (α → Bool) → S α → S α
&&& :: S α → S β → S (α, β)
>>> :: (S α → S β) → (S β → S γ)

→ (S α → S γ)
>>>= :: S α → (S α → S β) → S β
merge :: S α → S α → S α

fromJust :: S (Maybe α) → S α
edge :: S Bool → S ()

Figure 2: Basic Flask signal combinators.

signal abstraction. Like earlier incarnations of FRP, Flask provides
signals rather than AFRP’s signal functions. Unlike FRP, Flask’s
signals are always discrete. Discrete signals better reflect the asyn-
chronous event-based computation model in TinyOS, the sensor
network platform on which Flask is built. A Flask signal carrying
values of type α has type S α.

Figure 2 shows some of the basic Flask signal combinators.
We can now write a version of detect that will run on real sensor
network hardware:

detect :: Double → Double → Double
→ S Double → S ()

detect low high thresh =
(λsig → ewma high sig &&& ewma low sig)
>>>
map [$exp | λ(hi, lo) → hi / lo > $flo : thresh |]
>>>
edge

The result of running a combinator like detect is a residual ob-
ject level program, which is then efficiently compiled to nesC and
run on sensor network hardware. In the following section we dis-
cuss the quasiquoting facility and how we use it to embed object
languages in Haskell. We then discuss Flask’s signal model and ad-
dress practical issues like concurrency and persistent state. In Sec-
tion 5 we develop a significant application, and in Section 6 we
show how to build higher level abstractions with Flask.

4. Implementation
The primary challenge in implementing Flask is providing support
for object languages distinct from Haskell. Most existing metapro-
gramming environments make the assumption that the meta and
object level languages are identical (Taha and Sheard 2000; Sheard
and Peyton Jones 2002), which is clearly not appropriate for our do-
main. Unlike these systems, Flask must produce a residual program
that is not a Haskell term requiring a Haskell runtime for execution,
but that can be efficiently implemented on severely resource con-
strained hardware. Designing mechanisms to support distinct ob-
ject languages in Haskell requires addressing two key issues: syntax
and typing. We next describe how to add this support to Haskell.

4.1 Supporting object languages in Haskell
The key to adding syntactic support for object languages has al-
ready been described: quasiquoting. In previous work, we added
quasiquoting support to the GHC compiler (Mainland 2007), which
will appear in the next release (6.10) of GHC. This extension was
motivated by the current application, although it has many other
uses as well. For completeness we review how quasiquoting works,
and then we describe how it is used in Flask.

Quasiquoting allows programmers to use domain specific con-
crete syntax to construct Haskell terms. The implementation in
GHC makes use of existing Template Haskell (Sheard and Pey-
ton Jones 2002) machinery to convert domain specific syntax to
Haskell terms by calling a programmer-specified quasiquoter. The
quasiquoter is called at compile time, before type checking is per-
formed, so there is no possibility of compiling ill-typed Haskell.

The syntax for quasiquotation is similar to the syntax used
by Template Haskell for staged computations (Sheard and Pey-
ton Jones 2002). Whereas Template Haskell quotes a Haskell ex-
pression using bracket-bar pairs, e.g., [|1 + 2|], a quasiquotation
uses an additional dollar sign and identifier following the initial
open bracket. Consider again the final staged version of the detect
function previously defined:

detect :: Double → Double → Double
→ S Double → S ()

detect low high thresh =
(λsig → ewma high sig &&& ewma low sig)
>>>
map [$exp | λ(hi, lo) → hi / lo > $flo : thresh |]
>>>
edge

GHC transforms the quasiquoted term passed as an argument to
map into a Haskell term by calling the quasiquoter bound to the
Haskell variable exp and passing it the string contained between the
brackets, in this case "\(hi, lo) -> hi/lo > $flo:thresh".
The quasiquoter returns Haskell abstract syntax for the term that
is denoted by this concrete syntax. Flask provides a number of
quasiquoters for both NesC and Red, allowing expressions, dec-
larations, types, etc. from both languages to be quasiquoted.

For quasiquotation to be truly useful, quasiquoters must support
splicing Haskell terms into quoted terms. This is accomplished via
antiquotation, seen in the detect example where it causes, at the
time the quoted expression is evaluated, the value bound to the
Haskell variable thresh to be inserted as the second argument to
the comparison in the abstract syntax tree for the quasiquoted Red
term. As a second example, the following function pair takes two
arguments, each representing abstract syntax for a Red type, and
returns abstract syntax for the Red tuple type formed from the two
arguments:

pair :: Type→ Type→ Type
pair ty1 ty2 = [$ty | ($ty : ty1, $ty : ty2) |]

The syntax $ty : and $exp : is specific to the Red quasiquoter, and
tells it to splice existing Red abstract syntax trees into the parse
tree, in this case abstract syntax nodes representing a Red type and
a Red expression, respectively.

4.2 Typing object language terms
Although quasiquoting solves the syntactic problem of how to em-
bed an object language in Haskell, it does not help with the prob-
lem of assigning accurate types to object-level terms. For exam-
ple, quasiquoted Red expressions all have the Haskell type Exp,
which does not constrain the object level type of the expression.
There are several options when dealing with this issue. First, we
could choose to ignore the problem and delay type-checking until
the residual node-level program is compiled. But then we couldn’t
even give useful types to Flask’s stream combinators; the best we
could do for Flask’s map signal combinator would be to give it the
type Exp → S → S, where the constructor S no longer carries a
type parameter. Another option is to fully integrate Haskell’s type
system with the object language’s type system, a heavyweight al-
ternative that also requires substantial modifications to a Haskell
compiler. A middle-ground solution would be to reflect the object

language’s types as Haskell types and then encode the object lan-
guage’s abstract syntax using GADTs (Xi et al. 2003; Jones et al.
2006). While this encoding suffices for simple languages, for even a
moderately complex language there is a subtle problem: the GADT
carries only the type of the term it represents, and does not carry a
typing environment. One might be able to work around this limita-
tion by either asserting that all terms are typed in a single, fixed typ-
ing environment, or by requiring that terms only be produced in a
monad that carries the typing environment; even then, there are sub-
tle issues involving scope, variable ordering, and alpha-conversion
that are difficult or impossible to encode without resorting to rela-
tively heavyweight tricks. We explored both of these possibilities,
but found that in practice they do not work well.

The solution we chose is to wrap untyped object level terms
behind a type constructor N carrying a single type parameter that
reflects the object level term’s type at the Haskell type level. This
representation serves two main purposes. First, it allows us to type
object level terms and assign more appealing types to combinators
as shown Figure 2. Second, it allows us to write pure code without
requiring that object level terms be typed in a fixed type environ-
ment by wrapping object level type checking in a monadic action
that is only run when the Flask program is residualized. This means
that the type N α serves only as a contract that the object level
term it represents should resolve to object-level code with type α.
A Flask program containing ill-type object level terms can still run,
but it will fail to produce a residualized object level program if any
such ill-typed object term is used.

To type check object terms of type N α we need a way of
reifying the type α so it can be represented as an object level type.
This type is then used to type check the object term when the
program is residualized. Type reification is accomplished with the
type class Reify:

class Reify α where
reify :: α → Type

The member function reify takes a parameter of type α, which
serves only to fix the type being reified, and returns the object level
type corresponding to α. To illustrate further, we give the instance
declaration for the types Int and ∀α β.(α, β):

instance Reify Int where
reify = [$ty | Int |]

instance ∀α β.(Reify α, Reify β) ⇒ Reify (α, β) where
reify = [$ty | ($ty : tyα, $ty : tyβ) |]

where
tyα = reify (⊥ :: α)
tyβ = reify (⊥ :: β)

As mentioned, the N type constructor encapsulates a monadic
action. When this action is run, it checks that the object term has
the proper type. Additionally, object terms are hash consed (Goto
1974) to preserve sharing. Preserving sharing is important: with-
out doing so, it is all too easy to write code that ends up requiring
exponential space. Monadic actions are run in the Flask monad,
which tracks the state necessary to support hash consing, contains
the top-level type environment, and records the information neces-
sary to produce a residual nesC program. We elide the details of
hash consing in the remainder of the section to simplify the discus-
sion.

In general, we want to support a number of object languages and
allow terms from any such language to be represented as a value of
type N α. Therefore, we define a second type class, LiftN, that
allows object terms to be lifted to values of type N α.

class LiftN η α where
liftN :: η → N α

We can lift Red expression as follows:

instance ∀α.(Reify α) ⇒ LiftN Exp α where
liftN e = N (checkExp e ty)

where
ty :: Type
ty = reify (⊥ :: α)

The LiftN type class provides an added bonus: we can more
directly parametrize Flask combinators by a variety of different
object languages. Given LiftN, we can assign a more general type
to Flask’s map combinator:

map :: LiftN η (α → β) ⇒ η → S α → S β

This more flexible type for map lets the programmer write:

inc :: S Int → S Int
inc = map [$exp | (+1) |]

without having to explicitly insert calls to liftN.

4.3 Signals in Flask
Manipulating a Flask signal can require the implementation to
perform an effectful computation. For example, nesC has a standard
interface, ADC, for components that produce sensor data. Creating
a Flask signal from such a source requires generating the proper
nesC code to instantiate the sampling component and hook it to
downstream operators. However, these operations do not need to
be performed until the program is residualized, so we reuse the
technique we applied to our representation of object terms and
wrap the monadic action that encapsulates these effects in a data
constructor S.

Preserving sharing is even more vital in the signal setting. Con-
sider the clock and adc combinators:

clock :: Int → S ()
adc :: String → S () → S Double

The clock combinator takes a value in milliseconds and pro-
duces a signal of unit impulses at the specified rate. The adc combi-
nator takes the name of a nesC component implementing the ADC
interface, a stream of impulses to drive sampling, and returns a
stream of values sampled at the given rate. Both combinators re-
turn a monadic action wrapped in the S type constructor. When this
monadic action is run at program residualization time, it generates
nesC code to instantiate the proper component and call downstream
operators when an event, such as the arrival of a sample, occurs. Be-
cause Flask exposes signals directly, signals can be named—that is,
they can be bound to a Haskell variable. Returning to the detect ex-
ample, if sharing were not preserved, the &&& combinator would
duplicate the signal sig twice. This being the case, applying detect
to a signal created with the adc combinator would cause the result-
ing residual program to attempt to instantiate the nesC component
twice because the monadic action created by calling adc would be
executed twice, once for each branch of the computation.

As with the N data type, we address this problem by hash
consing signals. When the clock combinator is invoked, it returns
a wrapped monadic action that first checks to see if a clock signal
running at the given rate has already been created by a previous
monadic action; only if no such action has yet been performed
will it instantiate the signal itself. Similarly, let-binding the Haskell
expression adc "Seismometer" generates only a single instance
of the seismometer component in the residualized program no
matter how many times the binding is used at the meta level.

4.4 Stateful computations and concurrency
In addition to the sharing issue, Flask must deal with practical
issues related not to its embedding in Haskell, but to nesC and

TinyOS. TinyOS is a sensor network programming framework
written in nesC that requires programs to be written using an asyn-
chronous event model. For example, the ADC interface exposes two
functions, a command getData that tells the component imple-
menting the interface to acquire a single data sample, and an event
dataReady that the consumer of the ADC interface must provide
and that acts as a callback for an acquired sample. This pattern
pervades the standard interfaces in TinyOS: operations are not per-
formed by calling a blocking function that returns a result. Instead,
one calls a command that enqueues a request and returns imme-
diately, also providing a callback that is invoked when the result
of the operation is available. If a signal function invokes such an
asynchronous operation, it is possible that a subsequent invocation
of the signal function will occur before the first invocation finishes
executing. If the signal function needs to maintain some sort of
state, this kind of asynchronous operation can easily lead to a race
condition.

Avoiding state where possible is clearly preferable, but there
are times when state is necessary. Instead of forbidding state, we
provide combinators that allows the programmer to limit the scope
of stateful computations, thereby also limiting possible bugs like
race conditions. Inspired by AFRP, Flask provides an integrate
combinator, which is a “map with state”:

integrate :: LiftN η ((α, σ) → (β, σ))
⇒ N σ → η → S α → S β

The second parameter to this combinator is an object level function
which takes an input value paired with the current state and returns
an output value paired with the updated state. With integrate, we
can now complete the Flask implementation of detect by writing
the ewma function:

ewma :: Double → S Double → S Double
ewma α = integrate zero

[$exp | λ(x, xold) →
let x′ = $flo :α ∗ x +

(1.0− $flo :α) ∗ xold

in (x′, x′) |]
where

zero :: N Double
zero = liftN [$exp | 0.0 |]

Note that the initial state to be used, zero, must be given an
explicit type signature. This is due to the fact that the Haskell
type checker cannot infer the phantom type variable σ, and is a
shortcoming of the object language embedding approach we chose.

When a signal function is not synchronous, we can still allow
it to use state if we ensure that multiple executions of the signal
function are not interleaved. Consider a signal function applied to a
signal of sampled data that during its execution calls out to a NesC
component to perform an asynchronous operation, e.g., logging a
value to flash memory. We would like a mechanism that allows any
signal function to use state, but in this particular example we must
contend with the possibility that a new sample will arrive before
the previous sample is logged. If samples can be processed as fast
as they arrive in the steady state, then we could solve the state
problem by queueing new input samples until the previous sample
has been completely processed. Flask supplies a combinator, loop,
that provides this functionality. Inspired by the the ArrowLoop
class’s loop method, its type is:

loop :: Int → N σ → (S (α, σ) → S (β, σ))
→ S α → S β

The loop combinator threads state through an entire signal func-
tion, ensuring race-free access even if intermediate stages of the
signal function involve asynchronous processing. If a new value ar-

Flask Original (NesC)
Main program logic 27 n/a
Command processing 21 368
Fetch protocol 18 190
Eruption detection 26 143
Sample to datastore n/a 163
NesC components

Sampling 624 624
Flash storage 750 750
Routing protocol 2217∗ 1072

Flask wrappers
Sampling 101 n/a
Flash storage 214 n/a
Sample to datastore 179 n/a

Figure 3: Breakdown of the Flask and NesC versions of the volcano
application in terms of lines of code. ∗Represents the Flows protocol in
the Flask version and MultiHopLQI plus Drip in the NesC version.

rives from the input signal of type S α before the previous value has
been completely processed by the signal function, it is enqueued in
a fixed-sized queue whose depth is given by the first argument to
loop.

4.5 Generating Residual Programs
To convert a Flask signal to a residual nesC program, the monadic
action representing the signal is run. This action generates two bod-
ies of residual code: a nesC component configuration, specifying
which nesC components are instantiated and how they are con-
nected, and an intermediate Red program that corresponds to the
implementations of the instantiated components’ interfaces. This
intermediate Red program is composed of type-checked object
level terms; Red object terms are incorporated directly, and nesC
object terms are imported as foreign function calls. These terms
represent the point-wise signal operations that were composed to
create the signal being reified.

The intermediate Red program is then type checked again as
a whole and elaborated to a typed intermediate language that is a
variant of System FC (Sulzmann et al. 2007). Because closures are
disallowed, lambda lifting is trivial to perform. Polymorphic func-
tions are specialized for every type at which they are used, or stati-
cally monomorphized; this feature is supported by other compilers
such as MLton (Weeks et al.). The typed intermediate language is
then compiled to nesC code, which is combined with all nesC ob-
ject terms and output to a nesC module. This module implements
the component interfaces used in the previously generated configu-
ration. The generated nesC module and configuration are compiled
to produce a node-level binary. This binary is the residual program.

5. Application Case Study: Geophysical
Monitoring

In this section we take as a case study a Flask application for real-
time geophysical monitoring of volcanic activity. This application
is based on an original system (Werner-Allen et al. 2006) imple-
mented directly in NesC whose source is publicly available, and
doing the port gives us the opportunity to directly compare the com-
plexity and memory footprint of the Flask and NesC implementa-
tions. Several extraneous features were left out of the Flask port
which are excluded from our comparison here. We chose this sys-
tem because it represents a fairly complex, real-world sensor net-
work application involving high-data-rate sampling, flash storage,
signal processing, and reliable communication. Complete details on
the original system can be found in Werner-Allen et al. (2006). The

program is fairly sophisticated, involving 32 custom NesC compo-
nents, in addition to numerous standard TinyOS libraries.

Figure 4 shows the dataflow graph for the complete application.
Shown this way, the structure of the code is self-evident, whereas
the original NesC implementation is a complex set of interrelated
components. It is also clear that the structure of this application
cannot be readily described as a simple linear chain of operations;
there are multiple branches for control and data flow.

Figure 3 gives a breakdown of the lines of code for the ma-
jor components of each implementation. The main body of the
Flask wiring program is just 27 lines of code. It is difficult to di-
rectly compare this to the corresponding NesC application, since
the “main structure” is scattered across numerous modules and
component wirings. It is clear that using Flask reduces implementa-
tion complexity for most components. For example, the Fetch pro-
tocol is 190 lines in NesC, but just 18 lines in Flask, a reduction
of 90%. The Flows routing code is longer than MultihopLQI and
Drip, the protocols used in the original implementation, but this
is not surprising given its increased generality—MultihopLQI and
Drip only form spanning trees.

6. Building higher-level abstractions
Part of the appeal of functional programming is the power of the
abstraction facilities it provides, such as polymorphism, higher
order functions, closures and strong typing. It is this appeal that
led us to develop Flask. To demonstrate how Flask leverages these
abstraction facilities in the sensor network domain, we show how
Flask can express high-level abstractions that describe not just the
behavior of a single sensor network node, but the behavior of an
entire ensemble of devices.

Before we can proceed, we need combinators that allow Flask
signals to be carried between nodes. The Flask runtime provides a
flexible routing protocol, called Flows, that allows streams of val-
ues to be sent and received over the radio. This runtime functional-
ity is exposed to the programmer by the send and recv combinators,
which associate signals with abstract radio channels.

send :: FlowChannel → S α → S ()
recv :: FlowChannel → S α

Although the Flows protocol can be used to implement several kind
of routing topologies, the examples in this paper only use it to form
spanning trees that connect all participating sensor nodes back to a
single root node. In this configuration, each channel corresponds to
a separate spanning tree; nodes receive data from their children on
the channel, and data sent on the channel is delivered to a node’s
parent in the spanning tree.

Given send and recv, we continue with two examples of higher
level abstractions written using Flask: a network-wide fold combi-
nator, and FlaskDB, a compiler for a simple SQL-like query lan-
guage.

6.1 A macroprogramming combinator: nfold

Much research in the sensor network community has been geared
toward so-called macroprogramming, where a single program spec-
ifies the operation of an entire ensemble of sensor network nodes
(Madden et al. 2005; Bakshi et al. 2005b; Whitehouse et al. 2005;
Kothari et al. 2007; Newton et al. 2007; Sorber et al. 2007). By
choosing the appropriate primitive operations, Flask allows first-
class macroprogramming combinators to be written by the pro-
grammer rather than requiring that they be built-in. Our goal is to
write a combinator, nfold, that acts much like integrate, but op-
erates on signals received from other nodes as well as node-local
signals. The idea is that both a local signal and a signal containing
data from other nodes are combined, fed to a stateful signal func-
tion, the output of which is then forwarded to the appropriate next

Sampling

get seismic

coalesce
samples

Flow send
Flow recv switch

Flash
storage

switch

eruption
detector

edge status
generate
response

add
add

done

zip

get

done
unfold

start
stop

ping

filter
node ID

fetch

get bitmask

get block ID
get

send block

Figure 4: Dataflow representation of the volcano monitoring application. Gray boxes represent components implemented as NesC wrappers; the rest are
implemented directly in Flask.

hop. When this operation is run on the network of sensor nodes,
the ensemble will form a spanning tree, aggregate values received
from other nodes with locally-generated values, and forward the
aggregates up the spanning tree. This combinator can be defined as
follows:

nfold :: FlowChannel
→ N σ → (S (α, σ) → S (α, σ))
→ S α → S ()

nfold chan zero f sin =
merge (recv chan) sin

>>>= loop zero f
>>>= send chan

That we can so easily write a combinator that operates over an
entire sensor network is a testament to the power of the abstrac-
tions provided by Flask. The strategy of choosing a small number
of appropriate primitive operations and providing powerful facili-
ties for composing operations to produce new first class operations
is not unique to Flask; it is a mainstay of the functional program-
ming literature and has resulted in many powerful systems, from
parsing combinators (Hutton 1992) to evaluation of financial con-
tracts (Jones et al. 2000) to program testing (Claessen and Hughes
2000). Flask brings the power of this paradigm to bear on sensor
network programming.

6.2 Running queries with FlaskDB
Flask is a useful toolkit for building up higher-level sensor net-
work abstractions while providing the efficiency of compiled
NesC. In this section, we describe FlaskDB, an implementation
of the TinyDB (Madden et al. 2005) query system in Flask. Unlike
TinyDB, which uses a runtime query processing engine, FlaskDB
compiles a TinyDB query into a static, fully-optimized sensor node
binary. We demonstrate the operation of the FlaskDB compiler by
describing how it compiles the following query:

SELECT COUNT(ID), AVG(TEMP) PERIOD 10s

This FlaskDB query requests that the attributes ID and TEMP
be collected from every sensor node, and the aggregate functions
COUNT and AVG be applied to the attributes ID and TEMP, respec-
tively, to produce aggregates. Instead of blindly sending all at-
tributes up a spanning tree to a base station where the aggregate
functions are applied, the query compiler generates code that com-
putes partial aggregates, which represent the intermediate state of
an aggregate as data flows up the spanning tree. For example, the
aggregate function AVG maintains a partial aggregate consisting of a
count and a sum. These partial aggregates can be merged by adding
their components pairwise, and local temperature readings can be
added to an existing partial aggregate by adding the temperature
reading to the sum and incrementing the count. When the partial
aggregate reaches the base station, it is reduced; in the case of the
AVG aggregate, this involves dividing the sum by the count.

Given a query, the compiler builds a Flask signal that carries
partial aggregates received over the radio, one for each aggregate.
The compiler also constructs a signal that produces tuples contain-
ing the local values of the selected attributes, clocked at the spec-
ified period. Partial aggregates from other nodes are merged and
kept as local state until a value is received via the local attribute
signal. When this occurs, the local attributes are merged into the
existing partial aggregate which is forwarded up the spanning tree,
and the local partial aggregate state is reset.

The types of these signals vary from query to query, so the query
compiler uses existential types in its representation of intermediate
values produced during compilation. We also use the trick of rep-
resenting heterogeneous lists, which are necessary for representing
query results, with nested tuples. The full query compiler is less
than 200 lines of Haskell, not counting the parser. Our example
query produces a residual program consisting of over 1000 lines of
nesC.

7. Evaluation
Our goal in evaluating Flask is to demonstrate that it can be used
to write real sensor network applications while achieving accept-
able overheads (in terms of CPU and memory) compared to more
conventional approaches. We achieve this through a number of mi-
crobenchmarks that quantify the overhead imposed by Flask and
by showing data from a simple query compiled with the compiler
developed in Section 6.2 and run on a testbed of TelosB motes.

7.1 Microbenchmarks
Figure 5 shows CPU cycle counts for several microbenchmarks that
typify tasks performed by sensor network applications. For each
benchmarked task, both a version written in Flask and a version
written by hand in NesC were measured. For the Flask version,
we measured both an unoptimized residual program and a version
for which Flask performed a small optimization when generating
code, which we describe momentarily. All measurements were
taken using Avrora (Titzer et al. 2005), a cycle accurate simulator
for MicaZ motes1. We chose to benchmark MicaZ binaries instead
of TelosB binaries because we are not aware of a mature, cycle-
accurate simulator for the TelosB platform.

The “Filter” benchmark applies a filter to a synthetic signal,
only passing values that are greater than zero. The “Chained
maps” function applies a signal function, formed by compos-
ing an increment signal function with itself ten times, to a syn-
thetic signal. The NesC version wires together ten instances of an
Increment component instead of using function composition. The
“Windowed average” benchmark outputs the average of the pre-
vious ten values taken from an input signal. The “EWMA” and
“Eruption detection” benchmarks are as described earlier in the
paper.

1 In contrast to TelosB motes, MicaZ motes have an 8-bit CPU and 8K of
RAM instead of a 16-bit CPU and 10K of RAM

TinyOS Base Communications Common Application Total
ROM RAM ROM RAM ROM RAM ROM RAM ROM RAM

NesC 8360 1070 2840 1638 10360 940 16380 5540 37940 9188
Flask 8308 926 7498 2657 10506 916 12522 5168 38834 9667

Figure 6: MSP430 binary size (in bytes) for the NesC and Flask implementations of the volcano monitoring application.

Flask Flask (opt.) NesC
Filter 4 4 5
Chained maps 2 2 6
Windowed average 1076± 134 1076± 134 348± 133
EWMA 1110± 43 1015± 43 799± 59
Eruption detection 2423± 7 2008± 7 1519± 7

Figure 5: Microbenchmark CPU cycle counts on a simulated MicaZ
mote. Values are shown over a one-minute simulated run; standard devia-
tions are shown where significant.

In the latter three benchmarks, Flask imposes a significant over-
head in CPU cycle count. With optimization enabled, this overhead
is in most cases reduced, although not eliminated. The optimiza-
tion performed is just recursive argument flattening—when gen-
erating code for a function that takes a tuple as an argument, in-
stead of passing the tuple as a single value, it is unboxed and its
constituent parts passed as individual arguments. It turns out that
first two microbenchmarks use only values of base type—integers
and doubles—whereas the latter three microbenchmarks use tuples
and/or algebraic data types. In the cases where only base types are
involved in computations, Flask imposes no computational over-
head. We therefore speculate that the overhead imposed by Flask is
almost entirely due to the wrapping and unwrapping of these val-
ues; this claim is supported by the fact that simply flattening func-
tion arguments removes a substantial amount of overhead in the
EWMA benchmark, which involves a substantial amount of wrap-
ping and unwrapping. We believe that inlining combined with case
elimination,as described in (Jones and Marlow 2002), would serve
to eliminate most of the additional overhead.

To evaluate memory overhead, we compare the Flask and NesC
versions of the complete volcano monitoring system described in
Section 5. Figure 6 shows a breakdown of RAM and ROM sizes for
the MSP430 binary. We break the code down by TinyOS core com-
ponents, communications (including routing and command dis-
semination), common modules (sampling and flash storage), and
application-specific code. As the figure shows, the Flask version
uses 2% more ROM and 5% more RAM than the original NesC
code despite the increased complexity of the Flows routing layer.
The NesC application code is more complex due to increased con-
trol logic implemented more efficiently in Flask. We were careful
to size static data structures (such as message buffers) equivalently
in both systems.

7.2 Running Flask on real hardware
Our final evaluation of Flask demonstrates a FlaskDB query that
reports the average temperature across a sensor network every
10 seconds. The goal of this evaluation is to show that Flask works
on real hardware. Our example query was run on Motelab (Werner-
Allen et al. 2005b), consisting of 160 TelosB motes spread over
three floors of a building. Query results were delivered to a single
root node using a spanning tree. The root node was in a central
location on the second floor. During our trial run, only 157 of the

28

29

30

31

Te
m

pe
ra

tu
re

(◦
C

)

0

0.25

0.5

0.75

1

Fraction
ofnodes

reporting

6:00am 6:30am 7:00am 7:30am 8:00am 8:30am 9:00am

Time of day

Ground truth
Query
Yield

Figure 7: Ground truth and query results for the FlaskDB query
SELECT COUNT(id), AVG(temp) INTERVAL 10s.

160 nodes were able to deliver at least one packet to the base station
over a multi-hop route.

Figure 7.2 shows the average temperature computed by the
query over a 3 hour run. We also show the ground truth value of
the average temperature, obtained by having each node report its
current temperature to its serial port, which is logged to an external
database by the testbed server. The temperature increases as the sun
heats the building in the early morning, and then sharply decreases
as the air conditioning kicks in at 7 a.m. Note that deviation from
ground truth is correlated to poor yield—we speculate that the
distant, less well-connected nodes that have trouble delivering data
to the centrally located base station are in warmer parts of the
building.

The yield of the query, measured as the fraction of all 160 nodes
that reported values to the base station, is plotted on the secondary y
axis. Note that this includes the 3 nodes that could never find a path
to the base station. Despite the fact that the deployment is spread
over three full floors of a building, yield is still always above 80%.

8. Related Work
Clearly we took inspiration from the existing work on functional
reactive programming, which has been used to build reactive sys-
tems in many domains, including robotics (Peterson et al. 1999;
Pembeci et al. 2002; Hudak et al. 2003), animation (Elliott and
Hudak 1997), and graphical user interfaces (Courtney and Elliott
2001). Our work is motivated by many of the same goals, namely
exploiting the advantages of high-level languages to build reactive
systems. However, unlike traditional FRP systems, we must cope
with severely resource constrained target platforms and provide in-
tegration with existing code.

Closer to our work is the work on Real-Time and Event-Driven
FRP (Wan et al. 2001a,b; Wan 2002). These systems seek to pro-
vide static time and space bounds on FRP systems with the goal
of being able to run FRP programs on embedded devices. Unlike
Real-Time FRP, we cannot make the assumption that all signals are
synchronously driven by a global clock. Event-Driven FRP elimi-

nates this assumption, but the resulting language is so pared down
that it loses most of the appeal FRP holds in the first place. Our
work seeks to constrain the space and time behavior of node-level
code while maintaining as much of the power of FRP as possible.
We have also implemented an entire, working programming plat-
form that runs on severely resource-constrained devices. Real-Time
FRP focuses less on implementation and to our knowledge the only
program running on a device in a class comparable to our target
platform is a simple robot movement controller, which is itself a
slave to an FRP program running on a PC-class device.

Also related to our work are the many programming environ-
ments for sensor networks EnviroSuite (Lu et al. 2005), Semantic
Streams (Whitehouse et al. 2006), Kairos (Gummadi et al. 2005),
Regiment (Newton et al. 2007), and Abstract Task Graphs (Bakshi
et al. 2005a). These systems offer a range of programming models
at different levels of abstraction and are often tailored for a fairly
narrow range of target applications. For example, EnviroSuite (Lu
et al. 2005) is targeted at tracking applications, while Semantic
Streams (Whitehouse et al. 2006) provides a logic-based language
for composing distributed data-processing services.

The system that is most similar to Flask is WaveScript (New-
ton et al. 2008), a general-purpose stream processing language
which targets more powerful devices than Flask. Like Flask and
unlike StreamIT (Gordon et al. 2002), WaveScript focuses on asyn-
chronous data streams. In contrast to WaveScript, we make a care-
ful distinction between the meta and object level. The WaveScript
developers eschew the syntactic distinction between meta and ob-
ject level terms, claiming that the extra complexity inherent in ex-
plicit program staging imposes a “cognitive burden” on the pro-
grammer. Instead of explicit staging, WaveScript relies on partial
evaluation to produce a residual program. The down side of this
approach is that even if there exists some partial evaluation strat-
egy that would allow a given program to be compiled efficiently,
there is no guarantee that the WaveScript compiler implements this
strategy. In the end, both Flask and WaveScript require that pro-
grammers reason about program staging. We believe that being up-
front and explicit about this staging imposes less of a burden on
the programmer than does requiring him to reason about the inner-
workings of a compiler.

9. Conclusions and Future Work
We have described Flask, a programming environment that brings
FRP-style programming to sensor networks. By carefully staging
computations, Flask constrains the space and time behavior of
node-level code while allowing the programmer to use the power
of functional programming to construct sensor network programs.
We have shown that Flask is flexible enough to build systems that
run on real sensor network hardware and that it has acceptable
overhead. Although targeted at sensor networks, we believe the
techniques Flask uses to embed object languages in Haskell are
applicable to a wide range of domains.

We envision many interesting future directions for Flask. As a
first step, we hope to improve the Flask compiler to remove the
overhead incurred by the use of tuples and algebraic data types.
We also plan to push Flask by using it to build more real-world
applications. Finally, Flask raises many interesting issue related to
metaprogramming which we hope to explore.

Acknowledgments
This research is supported by the National Science Foundation un-
der grant number CNS-0519675. We would also like to thank Geoff
Werner-Allen for providing technical support for the MoteLab
testbed.

References
Andreas M. Ali, Kung Yao, Travis C. Collier, Charles E. Taylor, Daniel T.

Blumstein, and Lewis Girod. An empirical study of collaborative acous-
tic source localization. In IPSN ’07, pages 41–50, 2007.

Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner. The ab-
stract task graph: A methodology for architecture-independent program-
ming of networked sensor systems. In Proc. Workshop on End-to-End,
Sense-and-Respond Systems, Applications, and Services, pages 19–24,
2005a.

Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner. The ab-
stract task graph: a methodology for architecture-independent program-
ming of networked sensor systems. In EESR ’05: Proceedings of the
2005 workshop on End-to-end, sense-and-respond systems, applications
and services, pages 19–24, Berkeley, CA, USA, 2005b. USENIX Asso-
ciation.

Elaine Cheong, Judith Liebman, Jie Liu, and Feng Zhao. TinyGALS: A
programming model for event-driven embedded systems. In SAC, pages
698–704, 2003.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for ran-
dom testing of haskell programs. In ICFP ’00: Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming,
pages 268–279, New York, NY, USA, 2000. ACM.

Antony Courtney and Conal Elliott. Genuinely functional user interfaces.
In 2001 Haskell Workshop, September 2001.

Conal Elliott and Paul Hudak. Functional reactive animation. In Pro-
ceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’97), volume 32(8), pages 263–273. ACM, August
1997.

David Gay, Philip Levis, J. Robert von Behren, Matt Welsh, Eric A. Brewer,
and David E. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In Proc. Programming Language Design
and Implementation (PLDI ’03), pages 1–11. ACM, 2003.

Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira,
Ramesh Govindan, Ben Greenstein, August Joki, Deborah Estrin, and
Eddie Kohler. The Tenet architecture for tiered sensor networks. In Sen-
Sys ’06: Proceedings of the 4th international conference on Embedded
networked sensor systems, pages 153–166, New York, NY, USA, 2006.
ACM Press.

Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S.
Meli, Christopher Leger, Andrew A. Lamb, Jeremy Wong, Henry Hoff-
man, David Z. Maze, and Saman Amarasinghe. A stream compiler for
communication-exposed architectures. In ASPLOS ’02, 2002.

E. Goto. Monocopy and associative algorithms in an extended LISP.
Technical Report 74-03, Univ. of Tokyo, Information Science Lab., May
1974.

Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan.
Macro-programming wireless sensor networks using Kairos. In Proc.
DCOSS’05, 2005.

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler,
and Kristofer S. J. Pister. System architecture directions for networked
sensors. In ASPLOS ’00, pages 93–104, 2000.

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows,
robots, and functional reactive programming. In Summer School on
Advanced Functional Programming 2002, Oxford University, volume
2638 of Lecture Notes in Computer Science, pages 159–187. Springer-
Verlag, 2003.

John Hughes. Generalising monads to arrows. Sci. Comput. Program, 37
(1-3):67–111, 2000.

John Hughes. Programming with arrows. In Advanced Functional Pro-
gramming, volume 3622 of Lecture Notes in Computer Science, pages
73–129. Springer, 2004.

Graham Hutton. Higher-order functions for parsing. Journal of Functional
Programming, 2(3):323–343, July 1992.

Simon L. Peyton Jones and Simon Marlow. Secrets of the glasgow haskell
compiler inliner. J. Funct. Program, 12(4&5):393–433, 2002.

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Ge-
offrey Washburn. Simple unification-based type inference for GADTs.
In Proceedings of the 11th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’06, pages 50–61. ACM, 2006.

Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing
contracts: an adventure in financial engineering (functional pearl). ACM
SIGPLAN Notices, 35(9):280–292, 2000.

Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh
Govindan. Reliable and efficient programming abstractions for wireless
sensor networks. In Proceedings of the 2007 ACM SIGPLAN confer-
ence on Programming language design and implementation (PLDI ’07),
pages 200–210, 2007.

Philip Levis, David Gay, and David Culler. Active sensor networks. In NSDI
’05: Proceedings of the Second USENIX/ACM Symposium on Networked
System Design and Implementation, 2005.

Liqian Lu, Tian He, Tarek Abdelzaher, and John Stankovic. Design and
comparison of lightweight group management strategies in EnviroSuite.
In Proc. International Conference on Distributed Computing in Sensor
Networks (DCOSS), Marina Del Rey, CA, June 2005.

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TinyDB: an acquisitional query processing system for sensor networks.
ACM Transactions on Database Systems, 30(1):122–173, 2005.

Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for haskell.
In Haskell ’07: Proceedings of the ACM SIGPLAN workshop on Haskell
workshop, pages 73–82, New York, NY, USA, 2007. ACM.

Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macropro-
gramming system. In Proc. IPSN ’07, 2007.

Ryan Newton, Lewis Girod, Michael Craig, Sam Madden, and Greg Mor-
risett. Wavescript: A case-study in applying a distributed stream-
processing language. Technical Report MIT-CSAIL-TR-2008-005, MIT
CSAIL, 2008.

Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive
programming, continued. In Proceedings of the 2002 ACM SIGPLAN
Haskell Workshop (Haskell’02), pages 51–64, Pittsburgh, Pennsylvania,
USA, October 2002. ACM Press.

Izzet Pembeci, Henrik Nilsson, and Greogory Hager. Functional reactive
robotics: An exercise in principled integration of domain-specific lan-
guages. In PPDP ’02, October 2002.

John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Con-
trolling robots with Haskell. Lecture Notes in Computer Science, 1551:
91–105, 1999.

Tim Sheard and Simon Peyton Jones. Template metaprogramming for
Haskell. In Manuel M. T. Chakravarty, editor, ACM SIGPLAN Haskell
Workshop 02, pages 1–16. ACM Press, October 2002.

Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan,
Mark D. Corner, and Emery D. Berger. Eon: a language and runtime
system for perpetual systems. In Proc. SenSys ’07, pages 161–174, New
York, NY, USA, 2007. ACM.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and
Kevin Donnelly. System F with type equality coercions. In TLDI
’07: Proceedings of the 2007 ACM SIGPLAN international workshop
on Types in languages design and implementation, pages 53–66, 2007.

Walid Taha. Multi-stage programming: Its theory and applications. Tech-
nical Report CSE-99-TH-002, Oregon Graduate Institute of Science and
Technology, 1999.

Walid Taha and Tim Sheard. MetaML and multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(1–2):211–242,
2000.

Ben Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: scalable sensor net-
work simulation with precise timing. In Fourth International Symposium
on Information Processing in Sensor Networks (IPSN ’05), pages 477–
482, 2005.

Z. Wan, W. Taha, and P. Hudak. Real-time FRP. In International Confer-
ence on Functional Programming (ICFP ’01), Florence, Italy, Septem-
ber 2001a.

Zhanyong Wan. Functional Reactive Programming for Real-Time Reactive
Systems. Ph.d. dissertation, Computer Science Department, Yale Uni-
versity, October 2002.

Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. Lecture
Notes in Computer Science, 2257:155+, 2001b.

Stephen Weeks, Matthew Fluet, Henry Cejtin, and Suresh Jagannathan.
http://www.mlton.org/.

Geoff Werner-Allen, Jeff Johnson, Mario Ruiz, Jonathan Lees, and Matt
Welsh. Monitoring volcanic eruptions with a wireless sensor network. In
Proc. Second European Workshop on Wireless Sensor Networks (EWSN
’05), January 2005a.

Geoff Werner-Allen, Pat Swieskowski, and Matt Welsh. Motelab: A wire-
less sensor network testbed. In Proc. Fourth International Conference
on Information Processing in Sensor Networks (IPSN’05), Special Track
on Platform Tools and Design Methods for Network Embedded Sensors
(SPOTS), April 2005b.

Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensor network.
In Proc. 7th USENIX OSDI, Seattle, WA, Nov 2006.

Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic Streams: a frame-
work for declarative queries and automatic data interpretation. Techni-
cal Report MSR-TR-2005-45, Microsoft Research, One Microsoft Way,
Redmond, WA 98052, April 2005.

Kamin Whitehouse, Jie Liu, and Feng Zhao. Semantic Streams: a frame-
work for composable inference over sensor data. In Proc. Third Euro-
pean Workshop on Wireless Sensor Networks (EWSN), Zurich, Switzer-
land, February 2006.

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype
constructors. POPL ’03, 2003.

Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan,
Alan Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor
network for structural monitoring. In SenSys ’04, pages 13–24, 2004.

