
Causality-Based Versioning

Kiran-Kumar Muniswamy-Reddy and David A. Holland
{kiran, dholland}@eecs.harvard.edu

Harvard School of Engineering and Applied Sciences

Abstract
Versioning file systems provide the ability to recover

from a variety of failures, including file corruption, virus
and worm infestations, and user mistakes. However, us-
ing versions to recover from data-corrupting events re-
quires a human to determine precisely which files and
versions to restore. We can create more meaningful ver-
sions and enhance the value of those versions by captur-
ing the causal connections among files, facilitating se-
lection and recovery of precisely the right versions after
data corrupting events.

We determine when to create new versions of files au-
tomatically using the causal relationships among files.
The literature on versioning file systems usually ex-
amines two extremes of possible version-creation algo-
rithms: open-to-close versioning and versioning on ev-
ery write. We evaluate causal versions of these two algo-
rithms and introduce two additional causality-based al-
gorithms: Cycle-Avoidance and Graph-Finesse.

We show that capturing and maintaining causal rela-
tionships imposes less than 7% overhead on a versioning
system, providing benefit at low cost. We then show that
Cycle-Avoidance provides more meaningful versions of
files created during concurrent program execution, with
overhead comparable to open/close versioning. Graph-
Finesse provides even greater control, frequently at com-
parable overhead, but sometimes at unacceptable over-
head. Versioning on every write is an interesting extreme
case, but is far too costly to be useful in practice.

1 Introduction

Versioning file systems automatically create copies (i.e.,
versions) of files as they are modified, providing numer-
ous benefits to users and administrators. Users find ver-
sions convenient when they inadvertently remove or cor-
rupt a valuable file. Administrators find that versioning
systems greatly reduce the rate of requests to restore files

from backup. In addition, versioning file systems provide
the means to clean up after a data-corrupting intrusion.
Unfortunately, versioning alone does not help in identi-
fying the most recent “good” version of a file or how data
corruption may have spread from one file to another.

Snapshotting, often implemented using checkpoints,
is another approach for versioning that is common for
backup systems. Such a system periodically takes a
whole or incremental image of the file system and then
uses copy-on-write for data modified after the snapshot.
Snapshots, similar to versioning file systems, cannot help
identify the most recent “good” version of a file. Another
drawback of snapshot-based systems is the granularity of
recovery: it is not possible to undo changes made be-
tween snapshots.

Several new file system designs capture causality rela-
tionships among files for a variety of different purposes.
For example, Taser [7] captures causality information to
address the challenge of identifying files tainted by an
intrusion or corrupted by administrative errors. Back-
Tracker [11] captures causality information to analyze
intrusions. Provenance-aware storage systems (PASS)
capture the provenance or digital history of files to let
users answer questions such as, “How do these two files
differ?” “What files are derived from this one?” “From
what files is this file derived?” “How are these two files
related?” [14]. Other systems [19] preserve causal rela-
tionships to enhance personal search capabilities.

Combining versioning and the capture of causal rela-
tionships introduces functionality not available in exist-
ing systems. For example, suppose a system has been
compromised by a data-corrupting worm. Upon iden-
tifying a tainted file, the causal relationships provide a
mechanism to trace backwards to find the last version
prior to the corruption and then trace forward to identify
all the files tainted by that corruption. These two traces
precisely identify the appropriate files and versions that
need to be restored to recover from the intrusion. With-
out versioning, an administrator’s only recourse is to re-

store the system to a clean snapshot, potentially losing
valuable user data. Without causal relationships, the ad-
ministrator cannot know how the corruption has spread.

Similarly, imagine a scenario where a physics simula-
tor produces results today that differ from those produced
yesterday. Here, causal data can reveal the cause of the
difference, while versioning data can recover to the ear-
lier (and presumably correct) version.

Conventional versioning file systems [3, 10, 15, 18,
24] typically use one of two techniques to determine
when to create new file versions: “open-close” and
“version-on-every-write”. In the “open-close” approach,
versions are defined relative to open and close events.
Typically a new version is created upon the first block
update after an open and all writes that occur before the
final close operation appear in that new version. This
has the potential to lose valuable information. For ex-
ample, consider the split-logfile vulnerability in Apache
1.3 [25]. The vulnerability, present in a helper program
called split-logfile, allows any file in the sys-
tem with a .log file extension to be written. Assume
that a database server running on the same machine as
the Apache split-logfile helper uses a file called
db.log to store its recovery information. This database
server opens the file when it is started and keeps it open.
The first time the database server writes to the log file, an
“open-close” system will create a new version of it. That
version will remain the current version until the database
is shut down. Now, suppose an attacker exploits Apache
and writes new data in db.log. At this point, the log
consists of some old “good” log entries and some new
”bad” log entries. Even if an administrator finds that
db.log has been corrupted, the only version available
for recovery is the one that existed before the database
server wrote anything. If the administrator restores that
version, all database operations since the server started
will be lost. One might turn to the “version-on-every-
write” algorithm, which creates a new version each time
data is written to the file; this approach ensures that no
data is lost, but it can be expensive in both time and
space.

Fortunately, versioning algorithms informed by
causality relationships produce versions that facilitate re-
covery to the pre-tampering state without the overhead of
versioning on every write. In the Apache example above,
causality-based techniques force a new version of the log
file to be started before the attacker’s writes are applied.
We introduce two such causality techniques: Cycle-
Avoidance and Graph-Finesse. Cycle-Avoidance con-
servatively declares new versions using knowledge local
to the objects being acted upon (i.e, process, files, pipes,
etc). Graph-Finesse is less conservative, using global
knowledge to maintain an in-memory graph of depen-
dencies between objects, declaring a new version when-

ever adding a dependency edge introduces a cycle. We
discuss these algorithms in more detail in Section 4.

As we show in Section 6, any kind of versioning,
when coupled with maintenance of causal relationships,
provides significant value. In the presence of long-
running and/or concurrent execution, Cycle-Avoidance
creates the versions necessary to recover from corrup-
tion without introducing significant overhead above that
of open/close. Graph-Finesse creates slightly fewer ver-
sions than Cycle-Avoidance, but it pays significant over-
head in workloads that read and write a large number of
files. Versioning on every write exhibits sufficiently high
overhead that it is impractical.

The contributions of the paper are as follows:

• New functionality arising from the integration of
versioning with causal data,

• New causality-based techniques for versioning,

• A prototype embodying versioning and causal rela-
tionships, and

• An evaluation of four causality-based versioning al-
gorithms.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the system upon which we build our
causality-based versioning system and describe its essen-
tial architectural details. In Section 3, we discuss several
novel use cases that causality-based versioning enables.
In Section 4, we present details of the new versioning
algorithms. In Section 5, we discuss the versioning file
system implementation. In Section 6, we present eval-
uation results. In Section 7, we discuss related work.
Finally, we conclude in Section 8.

2 Causal Relationships with PASS

We extended PASS [14] (Provenance-aware storage sys-
tem), the causality-collection system we built, to capture
versioning information. We chose PASS as it captured
precisely the data that we needed and has a modular ar-
chitecture that made it easy to add versioning. In this
section, we provide a high level overview of the PASS
architecture to provide the necessary background to un-
derstand our version creation algorithms and implemen-
tation.

Figure 1 shows the PASS architecture. Its key com-
ponents are:

• Interceptor: The interceptor intercepts system
calls, passing information to the observer, described
next. The interceptor is a thin layer that is oper-
ating system specific, while the remaining compo-
nents can be operating system independent.

Figure 1: PASS Architecture

• Observer: The observer translates system call
events to provenance records. For example, when
a process P reads a file A, the observer generates
a record P → A, to indicate that the process P
depends on the file A. It is precisely these prove-
nance events that capture the causal dependencies
in which we are interested.

• Analyzer: The analyzer processes the stream of
provenance records, making sure that there are no
cyclic dependencies among objects. This is where
we implement our different versioning algorithms.

• Distributor: The distributor maintains provenance
for transient objects such as pipes and processes.
When these transient objects become part of the
ancestry of a regular file on a PASS volume, the
distributor creates a virtual object for them on the
PASS volume and stores their records to the vol-
ume. Creating a virtual object avoids the need for
duplicating the provenance of transient objects each
time we need to create a causal dependency involv-
ing them. Similar to regular files, PASS versions
these transient objects when necessary.

• Lasagna: Lasagna is the provenance-aware file sys-
tem that stores provenance records along with the
data. Internally, lasagna writes the provenance into
a log.

• Waldo: Waldo is a user-level daemon that reads
provenance records from the log and stores them in
a database. After a data corruption, PASS’s recov-
ery tools consult this database to determine causal
relationships.

The observer and analyzer are central to causality-
based versioning and are discussed further in Section 4.

PASS maintains provenance, and therefore causal rela-
tionships, for both persistent and transient objects. A re-
lationship between two files (persistent objects) is there-
fore expressed indirectly as two relationships, each be-
tween a file and a process. For example, when a process
issues a read system call, PASS creates a record stat-
ing that the process causally depends upon the file being
read. When that process then issues a write system
call, PASS creates a record stating that the written file
depends upon the process that wrote it. The causal rela-
tionships described by these records are the heart of the
data we use, both to instantiate file versions and also to
choose files to restore after a corruption.

3 Use Cases

In this section, we discuss use cases that demonstrate the
novel functionality enabled by causality-based version-
ing.

3.1 Intrusion Recovery
Recently, one of the authors upgraded the software on his
system. The upgraded packages included coreutils,
the package that contains ls. This author completed
the upgrade and continued working for the rest of the
evening. However, when he came back the next morn-
ing, ls emitted the message:

/bin/ls: unrecognized prefix: do
/bin/ls: unparsable value for

LS_COLORS environment
variable

The author then searched the web to learn that the behav-
ior might be the result of an intrusion. He promptly in-
stalled chkrootkit and rkhunter, two popular pro-
grams to verify that a system has been hacked. However,
both the programs failed to locate any known rootkits. At
this point, it was unclear if the aberrant behavior of ls
was due to the update to coreutils the evening before
or an intrusion.

Had he been running PASS, the author could have
followed the chain of provenance dependencies of
the file /etc/DIR_COLORS. (LS_COLORS is de-
rived from DIR_COLORS). If the provenance chain of
DIR_COLORS indicated that it was modified by the
package manager or a legitimate system utility, then the
system had not been hacked; otherwise, the system had
been hacked. In the event the system had been hacked,
there would be only one option: wipe the system and re-
install. This is obviously undesirable, especially since
the author had recently completed a re-install in order to

upgrade. Faced with this situation, the author longed for
a versioning file system coupled with PASS that would
permit him to selectively roll back the affected files to the
version just before they were corrupted. Had that been an
option, he could have continued using his system without
a full re-install.

3.2 Reproducing Research Results
Systems that collect provenance frequently do so to facil-
itate the reproduction of scientific results [22]. Consider
the common scenario where a scientist collects data from
some device (e.g., a telescope), transforms it through
many intermediate stages and produces a final output file.
Suppose he finds, a few months after publishing the data,
that one of the programs in the intermediate stages had a
bug. The scientist has no option but to begin anew with
the raw data and then re-run all the experiments that he
thinks may have been affected by the bug.

If, however, he has complete provenance of his data,
he can identify precisely which data sets were affected by
the corrupt program. Hence, he need only re-run those
experiments from the point at which the corruption oc-
curred. Further, if the raw data is unavailable (frequently,
raw data is archived and removed from data processing
systems once it has undergone its initial pre-processing),
he can use a versioning system to recover the missing
raw data to re-run the experiments. This method obvi-
ates the need to retrieve the raw data from archives or a
central repository.

3.3 System Configuration Management
Software configuration management is extremely
hard [26]. New software installation can (and regularly
does) break existing software, because packages interact
with each other through various agents: libraries,
registries, configuration files, and even environment
variables.

Provenance systems can help alleviate some of the
problems of configuration management by helping users
recover from a corrupt configuration. One of our au-
thors recently installed a new music player on his sys-
tem. The music player, in turn, depended on a number of
libraries that needed to be updated or downloaded. Af-
ter the install, the music player worked well, but much
to the annoyance of the author, his movie player ceased
to work. The author guessed that is was probably be-
cause of the updates to the libraries. The author tried to
use the package manager to revert the system to the state
that existed prior to the music player install. Using the
system package manager to remove the music player did
not help, because as far as the package manager was con-
cerned, the library updates were independent of the mu-

sic player install. The author could not manually undo
the library updates as he did not know the list of libraries
that were installed. A record of the causal relationships
between the libraries, the music player, and the movie
player would have helped the author identify which of
the libraries were common to the music player and the
movie player and hence would have helped to point out
(or narrow down) the offending library. Such causal data
coupled with a versioning file system provides exactly
the information needed to permit the user to revert all
the modified files to a state prior to that of the music
player install. Since the versioning system even restores
the package manager database to its prior state, it pre-
serves the consistency of the system.

The problems outlined in this use case arise mainly
because package management dependencies are gener-
ated manually and are brittle in nature. Alternatively, one
could use causal data recorded by PASS to gather the true
dependencies of a package that, in turn, can help perform
better roll backs after installation.

3.4 Database Recovery

Traditional databases are designed to recover from soft-
ware and hardware crashes. However, those mechanisms
are not sufficient to recover from a human error or a com-
promise due to the time gap between the event occur-
rence and the detection. In such cases, recovery involves
a manual sanitizing of the database. Causality-based ver-
sioning can help reduce the amount of effort and the
downtime of the service as we show in the following ex-
ample. For simplicity, we assume that the database is not
running transactionally.

A faulty client can corrupt a database by either adding
incorrect entries, removing valid entries, or updating ex-
isting entries incorrectly. Once the faulty client is de-
tected, one can use the causal data collected by PASS
with the versioning data to recover the database. Recov-
ery is simple in the case where the last database update
is by the faulty client. In this case, recovery simply en-
tails reverting the database to a version before the client
updated it. In the case where legitimate actions are in-
terleaved with the actions of the faulty client, automatic
recovery is hard as both legitimate and faulty updates are
coalesced in main memory and then written to disk. In
this scenario, one can use causal information to recover
the database to a version before the faulty client’s modi-
fications and a version after the faulty client’s modifica-
tions and then compute a difference of the data dump
between the two versions. The difference in the data
dump will contain both legitimate and illegitimate data
that needs to be sanitized, but the number of rows re-
quiring manual checking is much smaller than the entire
database.

3.5 Intellectual Property Compliance
Causality-based versioning can also help verify intellec-
tual property (IP) compliance and enable removal of IP
violations. For example, companies that use and develop
both proprietary software and open source software rou-
tinely require pre-release checks to make sure the pro-
prietary software has not been tainted by open source
software and vice-versa. In most cases, this is a te-
dious, manual process. One can use causal relationships
to identify paths between source files with different li-
censing models. When coupled with a versioning file
system, the system supports rigorous analysis of such li-
cense pollution and potentially explicit means of revert-
ing to untainted states.

4 Versioning Algorithms

As described in Section 2, in the PASS architecture the
observer generates causal relationship data and the an-
alyzer prunes these relationships, removing duplicates
and cycles. Programs generally perform I/O in rela-
tively small blocks (e.g., 4 KB), issuing multiple reads
and writes when manipulating large files. Each read
or write call causes the observer to emit a new record,
most of which are identical. The analyzer removes these
duplicates. Meanwhile, cycles can occur when multiple
processes are concurrently reading and writing the same
files [2]. Cycles in causality are nonsensical and must be
avoided. In the PASS system, the analyzer prevents cy-
cles by forcing new versions of objects to be created. It
does this by choosing when to freeze them; that is, when
to declare the current version “finished” and begin a new
version. Transient objects (processes and pipes) can also
be frozen to break cycles. To experiment with causality-
based versioning, we installed the versioning algorithms
in the analyzer. In this section, we describe the version-
ing algorithms we used, referencing Table 1 as an exam-
ple sequence of events.

4.1 Traditional Algorithms
In the open-close (OC) algorithm, the last close of a file
(that is, when no more processes have the file open) trig-
gers a freeze operation. The next open and write triggers
the start of a new version. This algorithm does not pre-
serve causality; some sequences of events (including the
example in Table 1) produce cycles. Figure 2 illustrates
how this happens.

The version-on-every-write (ALL) algorithm creates a
new version on every write. This avoids any violations
of causality but potentially creates a large number of ver-
sions. In this sense, it is the most conservative of the
algorithms we consider. The code for this algorithm is

Step P Q
1 read A
2 read B
3 write B
4 write A
5 read A
6 read B

Table 1: Example scenario to illustrate the versioning algo-
rithms. Each read and write operation is enclosed by an
open and close. All objects are initially at version one.

quite simple; because each write results in a new ver-
sion of a file and each read results in a new version of a
process, each record refers to a distinct version of some-
thing. Thus, there is no need to check for either dupli-
cates or cycles.

4.2 Cycle-Avoidance
The Cycle-Avoidance (CA) algorithm, as its name sug-
gests, preserves causality by avoiding cycles. For each
object, the analyzer maintains a unique object ID (as-
signed at object creation), a version number (incre-
mented on each freeze), and an ancestor table. The an-
cestor table records the object ID and version number of
all the immediate ancestors of the object. When CA re-
ceives a record of the form Ai → Bj , it stores Bj in
the ancestor table of A. CA creates a new version of an
object whenever it adds a new ancestor, where different
versions are considered distinct, to the object’s ancestor
table. Doing so guarantees that no cycles will be created.
CA differs from version-on-every-write, because not all
writes add new ancestors.

When the analyzer receives a record of the form Ai →
Bj , it examines the ancestor table of A for Bk, that is,
some version k of object B, and uses the following rules
to perform both duplicate detection and cycle handling.

• Rule CA.1: If no Bk exists in the ancestor table of
A, then B is a new ancestor for A. Issue a freeze
operation on A to create a new version and add Bj

to the ancestor table of A.

• Rule CA.2: If Bk exists and j = k, then the causal-
ity record Ai → Bj is a duplicate and we discard
the record.

• Rule CA.3: If Bk exists and j < k, the new
record refers to a version older than the most re-
cent one recorded in A’s ancestor table, and the ex-
isting causality relationship Ai → Bk subsumes
any causal relationships of Bj . Hence, the causality

(2.1) (2.2) (2.3) (2.4) (2.5) (2.6)

Figure 2: Illustration of the open-close algorithm for the sequence in Table 1. The arrows represent causality and point opposite
to data flow. In (2.3), a new version of B is created as it is the first write since the last close. In (2.4), a new version of A is created
for the same reason. A cycle A2 → Q→ B2 → P → A2 (thick lines) results on the last read as shown in (2.6).

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6)

Figure 3: Illustration of the Cycle-Avoidance algorithm for the sequence in Table 1. In (3.1), a new version of P is created by
the rule CA.1. In (3.2), a new version of Q is created by the rule CA.1. In (3.3), a new version of B is created by the rule CA.1.
In (3.4), a new version of A is created by the rule CA.1. In (3.5), a new version of P is created by the rule CA.4. In (3.6), a new
version of Q is created by the rule CA.4. The end result is that there are no cycles.

record Ai → Bj is a duplicate and we discard the
record.

• Rule CA.4: If Bk exists and j > k, Bj is a newer
version than the Bk in A’s ancestor table. Thus,
Bj depends on some objects on which Bk did not
depend. Therefore, we issue a freeze on A to create
a new version and update the ancestor table of A to
name Bj instead of Bk.

Figure 3 illustrates the behaviour of the Cycle-
Avoidance algorithm for the example sequence in Ta-
ble 1.

4.2.1 Self-Cycles

Self-cycles arise when a process is both reading and writ-
ing the same file. Some programs, such as the GNU
linker, generate self-cycles as they repeatedly read from
and write to their output files. The Cycle-Avoidance al-
gorithm as described can create a large number of unnec-
essary versions in this situation. To avoid this, we track
each object’s last ancestor. When the analyzer receives
a record of the form Ai → Bj , it makes the following
check:

• Rule CA.self-cycle: If the last ancestor of Bj is
Ai, the new record creates a self-cycle; discard the
record.

The above rule tells us that the last version change of
B occurred because of the current version of A. In that

case, the data being fed to A originated from A itself, and
we have a self-cycle. Records representing self-cycles do
not add information and can be dropped immediately.

4.3 Graph-Finesse
As described above, Cycle-Avoidance decides when to
create new versions using local knowledge about the ob-
ject to which a dependency refers. In contrast, Graph-
Finesse (GF) uses global knowledge to make its deci-
sions. It maintains a global directed graph of the causal
dependency relationships between objects. The GF al-
gorithm checks each new record against the graph and
forces the creation of a new version of a single file if and
only if adding the record would otherwise create a cycle.
The name arises from the fact that it picks out a compar-
atively small number of new versions to create while still
preserving causality.

Given a record Ai → Bj , GF uses the following rules:

• Rule GF.dup: Check if Ai → Bj already exists in
the causal-dependency graph. If so, the record is a
duplicate; discard it.

• Rule GF.detect: Check if Bj →∗ Ai, that is, if a
path of zero or more steps exists linking Bj to Ai.
If so, then Ai → Bj →∗ Ai forms a cycle. Freeze
A, creating Ai+1, change the record to Ai+1 → Bj ,
and add this information to the graph. There will
now be no cycle; because Ai+1 is new, it cannot be
an ancestor of Bj .

(4.1) (4.2) (4.3) (4.4) (4.5) (4.6)

Figure 4: Illustration of the Graph-Finesse algorithm for the sequence in Table 1. In (4.3) and (4.4), new versions of B and A are
created by the open-close mechanism. In (4.6), a path exists from B2 to Q1 (thick lines), so Q2 is created by rule GF.detect and no
cycle is formed. As we can see, Graph-Finesse creates fewer versions than Cycle-Avoidance.

• Rule GF.default: Otherwise, add Ai → Bj to the
graph.

By design, GF also subsumes open-close versioning
and includes the freeze-on-last-close behavior as de-
scribed in Section 4.1.

To keep the graph from growing without bound, it is
important to prune it. Any node in the graph (represent-
ing some version of some object) may be pruned if that
node is frozen, that is, any future write to the object will
create a new version or be to some already existing newer
version, and all the ancestors of the node are frozen. (If
an ancestor is unfrozen, writing to it may cause a cycle.)

It is therefore possible to bound the size (or diame-
ter or other measure) of the graph at the cost of creating
extra versions, by freezing unfrozen objects that would
otherwise be pruned. We have considered this but not
implemented it, because there seems to be little need for
it in practice.

Graph-Finesse can consume more CPU for some
workloads as it has to traverse the graph on every record
addition. Our evaluation confirms this. The memory
consumption of Graph-Finesse, however, is comparable
to the other algorithms. Graph-Finesse can also use the
self-cycle logic described in Section 4.2.1. Figure 4 illus-
trates the behaviour of the Graph-Finesse algorithm for
the example workload.

4.4 Discussion

We now discuss how pruning entries in CA and GF does
not affect the use cases discussed in section 3. The OC,
CA, and GF algorithms record the same versioning data
for the first three use cases as they involve an application
making a one time modification to all the data files in-
volved. Such changes generate the same causal informa-
tion and data versions for the three algorithms. The ALL
algorithm generates the same causal information and ver-
sioning data as the other algorithms with the difference
being that the data is spread over more versions. For the
remaining two use cases, the causal algorithms record
different causal information and versioning data. We ex-

plain how they differ in the database recovery (3.4) use
case.

The database server (server) opens the database at
startup, writes to it in response to client requests, and
closes the file at shutdown. In OC, the first time the
server writes to the database, it creates a new version. All
subsequent database modifications are part of this new
version and old data is not copied before applying these
modifications, because the file is still open. Thus, restor-
ing the old version loses any legitimate modifications
between the first write and the faulty writes. Clearly,
OC versioning is not sufficient for the database recovery
use case. ALL has sufficient information as it recorded
all causal information and versioned on every database
modification. However, versioning the database this fre-
quently is potentially very inefficient.

In CA, reception of a client request produces a new
version of the server process. This, in turn, triggers a
new version of the database, when the server modifies
the database. Multiple modifications resulting from a
single client request do not create multiple versions, be-
cause the server’s version does not change. However,
when a new (faulty) request arrives, the server’s version
increments as does the database’s version. Interleaved
requests from multiple clients will generate many ver-
sions. Thus, in a single client case, CA behaves like OC
and when clients interleave, it behaves like ALL. Hence,
there is sufficient information to undo a faulty client’s
updates. The GF algorithm behaves in a manner similar
to CA.

5 Implementation

In this section, we describe our versioning design
choices, our implementation, and the limitations of
our system. Our versioning design was influenced by
the comprehensive versioning file system (CVFS) [24],
which explored metadata efficiency in versioning file
systems. CVFS showed that logging all the modifica-
tions of a file to a journal is more efficient than creat-
ing a new inode for each version. Hence, we use a redo
log for storing versioning data for files. Although CVFS

uses multiversion B-trees to handle versions of directo-
ries, we store directory metadata in an undo log, as this
is much simpler to implement. We implement our ver-
sioning system by modifying Lasagna, the PASS storage
engine. Lasagna is a stackable file system, which used
eCryptfs [8] as its starting code base.

5.1 File Versioning
For each file foo, we maintain a version file v;12345,
where 12345 is the inode number of foo. The version
file is a log where we record old data before updating
the primary file. Inode numbers are never reused, be-
cause we never delete files. For locality, we keep the ver-
sion files and the files they describe in the same directory.
Users cannot access the version file directly as we filter
out the version file names in readdir and lookup.

The version file consists of the following three types
of log records. The version record marks the start of data
records for a version. It contains the version number and
the metadata attributes of the version such as the file size,
uid, gid, etc. The page record holds old data being over-
written. This contains the data and the page number in
the file from which the data came. Finally, the beginptr
record is the last record of a version; it records the loca-
tion of the corresponding version record to allow scan-
ning backwards.

Each version begins with a version record, ends with
a beginptr, and has some number of intervening page
records. We write a beginptr record to the version file
when a freeze request is issued on the file. We write a
version record on the first write call on the file after a
freeze.

When a program issues a write call on a file, we
read the pages that the write call overwrites and write
a page record for each. When a file is truncated, we
log all discarded pages. We record each page only once
per version. For example, if the file system receives
two 4K writes at offset 0, we log data only for the
first (assuming the version does not change between the
writes). On an unlink, we rename the target file to
v;12345;deleted where 12345 is the inode num-
ber. A native file system could remove the file blocks
from the primary file and append them to the version file.
Lasagna, however, is a stackable file system and does not
control the file layout of the underlying file system. In-
stead, we rename the file on the last unlink. This is
more efficient than copying blocks from the primary file
to the version file, especially for large files.

5.2 Directory Versioning
For each directory, we maintain (within the directory) a
version file named by inode number, as we do for files.

The directory version file has version and beginptr log
records as we do for a regular file. It also has three
other log record types: The add entry record represents
an addition to a directory via create, link, mkdir,
or symlink. This record contains the inode and version
of the directory to which we are adding, and the name,
inode, and version of the entry, which can be a file or
a directory. The del entry record represents a removal
from a directory by unlink or rmdir. This contains
the same data as the add entry record. The rename entry
records a directory entry being moved from one direc-
tory to another. Where appropriate, this is written to the
version logs of both directories involved in the rename.
This record contains the inode and version of the new di-
rectory, the old directory, the old file, and the overwritten
target file (if it existed), and the old and new file names.

Because version logs are never deleted and files are re-
named on deletion, directories are never truly empty, so
our versioning file system cannot perform rmdir oper-
ations. Instead, when a directory is removed, we check
to see if all the files in the directory are either v;inode or
v;inode;deleted files, i.e., all files are either ver-
sion files or deleted files. If so, the directory is “virtu-
ally” empty, and we can move the directory out of the
way using a ;deleted suffix.

5.3 Accessing Previous Versions
We provide an ioctl that is used to access old versions
of a file. The ioctl takes as input, a name, a version,
and a file descriptor and recovers the old version into the
file descriptor. Internally, we perform recovery by scan-
ning backward in the version file until we find the de-
sired version record. Once this has been found, we scan
forward in the version file writing the data pages of the
file version to the user supplied file descriptor. We also
update the attributes of the file descriptor based on the
values recorded in the version record. Hence, previous
version access is a redo operation. Directory operations,
on the other hand, are undone depending on the contents
of the version log records.

5.4 Limitations
The causal data that we capture is an approximation and
can lead to false positives or negatives while perform-
ing analysis for recovery. For example, /etc/shadow
will be in the history of every process and file, as login
reads it while authenticating users. Hence even legiti-
mate users that log in after an attack can appear to be
causally related to the attack. The general approach to
deal with this has been to white-list some of these files,
i.e., ignore the causal information on some files while
performing analysis. Further, contextual policies to ig-

nore some of the causal information can help improve the
results of the analysis. For example, to construct the list
of files needed to migrate an application, we need to use
all the causal information as we do not want the applica-
tion to fail on restart. However, while analyzing causal
data during intrusion recovery, we need consider only
those files that have been written by illegal processes.

As with all provenance systems, PASS cannot capture
causal dependencies external to the computer. For ex-
ample, when a user prints a file and then makes some
notes based on what she read, PASS cannot capture the
dependency between the notes to the source file. PASS
does, however, allow users and applications to annotate
user-knowledge or application specific provenance to the
provenance collected by PASS (with the obvious limita-
tion that the user or application needs to take the correct
action).

Attackers can perform a denial of service attack by re-
peatedly overwriting files, filling the disk with versioning
information. While this is not different from an attacker
filling the disk with regular files, we can do better than
regular file systems by using the causal information to
detect anomalous behaviour and prevent it [12, 23].

Because our implementation is a stackable file sys-
tem, it is vulnerable to tampering by means of un-
mounting it and inspecting or altering the underlying
state. This could be prevented by using cryptography
or by having a non-stackable implementation and using
a securelevel-type scheme to protect raw disk de-
vices.

Finally, we are vulnerable to an intruder changing
the kernel. Once the intruder has access to the kernel,
she can change the causal information and the version-
ing information, thus making accurate recovery impossi-
ble. Secure Disk Systems [27], where an intruder can-
not modify the causal or versioning data once it has been
written to disk, helps solve the problem partially, by al-
lowing users to recover data up to the point the system
was subverted. This is better than a clean system install.
Causal versioning is still useful for recovery in the cases
where attackers do not care to cover up their tracks, such
as when they set up a bot on a machine and abandon the
system after a few days.

6 Evaluation

The goal of our evaluation is twofold. First, to quan-
tify the overheads introduced by the different version-
ing systems. Second, to evaluate the efficacy and per-
formance of the different algorithms during recovery of
files. We address these goals as follows: First, we dis-
cuss the evaluation platform and the configurations we
used for evaluation. In Section 6.1, we discuss the per-
formance overheads for four benchmarks representative

of a broad range of workloads. In Section 6.2, we discuss
how the versioning algorithms perform during recovery.

We ran all the benchmarks on a 3GHz Pentium 4 ma-
chine with 512MB of RAM. The machine had a 80GB
7200 RPM Western Digital Caviar WD800JB hard drive
that was used to store all file system data and metadata,
including causality. The machine was running Fedora
Core 5 with a PASS kernel based on Linux 2.6.23.17 and
Lasagna was stacked on Ext2. We recorded elapsed, sys-
tem, and user times, and the amount of disk space uti-
lized for all tests. We also recorded the wait times for
all tests; wait time is mostly I/O time, but other factors
such as scheduling time can also affect it. We compute
wait time as the difference between the elapsed time and
system+user times. We do not discuss the user time as
it is not affected by the modifications in the kernel. We
also ran the same benchmarks on Ext2 using those re-
sults as a baseline. In order to separate the overhead due
to versioning from the overhead due to causality, we also
ran all experiments using versioning without enabling
causality collection. We used the open-close algorithm
for the latter experiments. We ran each experiment at
least 5 times. In all cases, the standard deviations were
less than 5%.

We evaluate the system under the following configu-
rations:
VER: open-close versioning with no causal data
OC: open-close versioning with causal data
CA: Cycle-Avoidance versioning with causal data
GF: Graph-Finesse versioning with causal data
ALL: Version-on-every write with causal data

6.1 Performance Overhead Results

We ran the following four workloads to evaluate the
versioning algorithms. 1. Linux compile, in which
we unpack and build Linux kernel version 2.6.19.1.
This benchmark represents a CPU-intensive workload.
2. Postmark, that simulates the operation of an email
server. This represents an I/O-intensive workload. We
ran 1,500 transactions with file sizes ranging from 4 KB
to 1 MB, with 10 subdirectories and 1500 files. 3. Mer-
curial activity benchmark, where we start with a vanilla
Linux 2.6.19.1 kernel and apply, as patches, each of
the changes that we committed to our own Mercurial-
managed source tree. This benchmark evaluates the over-
head a user experiences in a normal development sce-
nario, where the user works on a small subset of the files
over a period of time; 4. A biological blast [1] workload
that is representative of a scientific workload. The work-
load finds protein sequences that are closely related in
two different species. The workload formats two input
data files with a tool called formatdb, processes the two
files with blast, and then massages the output data with a

 0

 500

 1000

 1500

 2000

 2500

 3000

EXT2 VER OC CA GF ALL

T
im

e
(S

ec
on

ds
)

1695s
1898s 1985s 2005s 2055s

2667s
Wait

 User
 System

Figure 5: Linux compile elapsed time results.

series of perl scripts.

Causal Data Version Space
VER - 37.6MB (2.9%)
OC 154.5MB (12.0%) 49.0MB (3.8%)
CA 172.3MB (13.4%) 54.8MB (4.3%)
GF 154.5MB (12.0%) 49.0MB (3.8%)
ALL 462.6MB (35.9%) 1.1GB (85.7%)

Table 2: Linux compile Space overheads. All the overheads
shown are computed as a percentage of the data in vanilla Ext2
(1.26GB).

Linux Compile Benchmark Results Figure 5 shows
the elapsed time results for Linux compile and Table 2
shows the space overhead. Plain versioning (VER) adds
11.9% to the elapsed time and 2.9% to the space. The
increase in elapsed time is mostly due to the additional
writes performed to store versions, but a small portion is
due to the fact that we use a stackable file system. For
the OC, CA, and GF algorithms, the overheads increase
moderately over VER to 17.1%, 18.3% and 21.3% re-
spectively. This increase is due to the extra writes issued
to record causal data. For this benchmark, CA and GF,
the causality based algorithms, perform comparably to
OC in terms of elapsed time and version space. ALL,
as we expect, has the worst elapsed time performance
with 57.4% overhead. The ALL overhead is a result of
the enormous number of versions being created and the
quantity of data necessary to do so. The system time
also increases significantly for ALL due to the distribu-
tor having to cache large amounts of causal data.

Postmark Benchmark Results Figure 6 shows the
elapsed time results for Postmark and Table 3 shows the
space overheads. The overheads follow a pattern similar
to the overheads for the Linux compile benchmark. VER

 0

 100

 200

 300

 400

 500

 600

 700

EXT2 VER OC CA GF ALL

T
im

e
(S

ec
on

ds
)

466.8s
505.2s 508.8s 508.8s 509.2s

591.0s

Wait
 User

 System

Figure 6: Postmark elapsed time results.

Causal Data Version Space
VER - 1.28GB
OC 1.8MB (0.14%) 1.28GB
CA 1.2MB (0.09%) 1.28GB
GF 1.9MB (0.15%) 1.28GB
ALL 61.2MB (4.74%) 1.38GB

Table 3: Postmark space overheads. Causal data overheads are
computed as a percentage of the data written in Ext2 (1.26GB).
Postmark deletes all files it creates at the end of the benchmark.
In versioning systems, however, no file is deleted and all un-
linked files are retained as is. The version space column shows
the amount of space retained at the end of each algorithm.

has the lowest overhead at 8.2%. VER’s overhead is due
to the extra writes to record version data and the double
buffering in Lasagna (stackable file systems cache both
their data pages and lower file system data pages). The
overheads increase marginally for OC, CA, and GF to
9%, 9%, and 9.1% respectively. The increase is marginal
as causal information recorded is minimal and the ver-
sion data also increases minimally from VER to OC, CA,
and GF. Once again, ALL, with a 26.6% overhead ex-
hibits the greatest overhead as expected.

Mercurial Activity Results Figure 7 shows the
elapsed time results for the Mercurial activity benchmark
and Table 4 shows the space overhead. The performance
overheads follow the pattern we have seen so far. How-
ever, surprisingly, GF performs worse than even ALL
for this benchmark. VER, CA, GF, and ALL have over-
heads of 25.9%, 28.8%, 27.9%, 89.6%, and 61.3% re-
spectively. The performance overheads of GF is a result
of a very large patch combined with the way the pro-
gram patch functions. patch works by first reading
the patch file and the file to patch, then merges the two
files into a temporary file, and finally renames the tem-

 0

 200

 400

 600

 800

 1000

 1200

 1400

EXT2 VER OC CA GF ALL

T
im

e
(S

ec
on

ds
)

635.4s

799.8s 818.4s 813s

1204.4s

1024.8s

Wait
 User

 System

Figure 7: Mercurial activity elapsed time results.

Causal Data Version Space
VER - 228.1MB (26.6%)
OC 38.3MB (4.5%) 233.4MB (27.2%)
CA 28.3MB (3.3%) 230.6MB (26.9%)
GF 30.3MB (4.7%) 233.4MB (27.2%)
ALL 77.8MB (9.1%) 383.3MB (44.6%)

Table 4: Mercurial activity space overheads. All the over-
heads shown are computed as a percentage of the data in Ext2
(859MB).

porary file to the file specified in the patch. At one point
during development, we moved from a Linux 2.6.19.1
kernel to a Linux 2.6.23.17 kernel. This resulted in a
large patch touching all the source files in the repository.
This forced a single instance of patch to read and write
all of the 20,000 files in the Linux source tree. Every
time patch writes to a new file, GF verifies that the file
does not form a causality-violating cycle with the files
that patch previously read. This results in the heavy
system time overheads. This problem could be allevi-
ated by having patch spawn multiple processes each of
which merges a unique subset of the files specified in the
patch file.

Another anomaly is that CA generates less causal data
than OC. The explanation is that this workload generates
a rename for every file to be patched. OC issues a freeze
on the directory every time a directory is modified. CA,
however, uses the causal history to determine that the
same process is modifying the directory and eliminates
duplicate entries. This results in CA consuming the least
amount of both causal and version data.

Blast Workload Results Figure 8 shows the elapsed
time results for the blast workload and Table 5 shows the
space overhead. The overheads for this workload fol-
low the pattern seen in the previous workloads. The time

 0

 20

 40

 60

 80

 100

EXT2 VER OC CA GF ALL

T
im

e
(S

ec
on

ds
)

68s 69s 69s 69s 69s
74s

Wait
 User

 System

Figure 8: Blast elapsed time results.

Causal Data Version Space
VER - 40KB (0.7%)
OC 172KB (2.9%) 40KB (0.7%)
CA 176KB (3.1%) 40KB (0.7%)
GF 172KB (2.9%) 36KB (0.6%)
ALL 3.7MB (65.4%) 14.4MB (257.4%)

Table 5: Blast workload space overheads. All the over-
heads shown are computed as a percentage of the data in Ext2
(5.8MB).

overhead is 1.4% for the VER, OC, CA, and GF config-
urations. The causal data overhead is less than 3.1% and
the version data overhead is less than 1% for VER, OC,
CA, and GF configurations. The workload is CPU inten-
sive and processes a small number of large files, resulting
in the minimal overheads for VER, OC, CA, and GF. For
ALL, the elapsed time overhead is 8.8% and the space
overhead is 65.4% on causal data and 257.4% on version
data. The version data overheads of ALL is due to the
behaviour of formatdb and blast. They write data
in chunks smaller than a page, which versions the same
page multiple times.

6.2 Recovery Benchmark Results

The goal of this subsection is to answer the following
questions: First, in scenarios where open-close is suffi-
cient (such as the first three use cases in Section 3), do
the (unnecessary) causality-based algorithms impose ad-
ditional recovery overhead? Second, in scenarios where
causality does matter (the last two use cases in Section 3),
how do the algorithms compare in recovery time and data
loss?

To answer the first question, we wrote a program
that simulates the behaviour of a worm. Worms typi-
cally overwrite one or more files/executables (for exam-
ple, common executables like ls) and install some new

Causal Data Version data Bytes Read Recovery Time
11th 7th 3rd 11th 7th 3rd

OC 60KB 12KB - - - - - -
CA 176KB 470.5MB 39.15MB 39.16MB 39.17MB 23s 25.2s 27.4s
GF 184KB 470.5MB 39.15MB 39.16MB 39.15MB 23s 24.6s 25.8s
ALL 76.9MB 1.97GB 45.24MB 53.99MB 62.76 214.2s 452.8s 689s

Table 7: Results for recovering from the Apache simulator. All algorithms recover the same amount of data (40MB), but read in
different amounts of data to perform the recovery.

Causal Version Recovery Bytes
Data Space Time Read

OC 21.2MB 151.6MB 173.4s 179.1MB
CA 12.7MB 150.4MB 163.2s 163.9MB
GF 21.1MB 151.9MB 173.2s 179.1MB
ALL 52.8MB 249.3MB 191.2s 182.9MB

Table 6: Results for recovering from a worm attack. All algo-
rithms recover the same amount of data (161.68MB), but read
different amounts of data to perform the recovery.

files/programs (irchat servers being a popular choice).
Our worm-simulator functions in a similar manner. The
program traverses a copy of the Linux-2.6.19.1 source
tree, overwrites some files and creates new “bad” files.
All in all, we taint 25,600 files, writing a total of 500MB
of data. Table 6 shows the time taken for recovering from
this attack by each of the versioning algorithms. Recov-
ery is performed in two phases. In the first phase, once
a malicious process has been identified, we traverse up
that process’s causal data graph to determine the root
cause of the break-in. Backtracker [11] and Taser [7]
perform a similar analysis to determine the cause. In the
second phase, once we know the root cause of the attack,
we propagate down the root process descendant tree to
identify potential victims and recover them to a version
just before the malicious process tampered with it. The
recovery times that we report here are the times of the
second phase. The results show that the recovery times
are proportional to the amount of causal and versioning
data stored. CA has the best recovery time and ALL has
the worst recovery time. This is despite the fact ALL re-
covers the same amount of data as other algorithms and
reads roughly the same amount of data as OC and GF
to perform the recovery. ALL stores more versioning in-
formation than the other algorithms. Hence the required
recovery data is spread over a much larger area on the
disk. In turn, the recovery process has to perform more
seeks to recover the same amount of data.

To answer the second question, we wrote a bench-
mark that simulates the Apache vulnerability scenario
described in Section 1. The program first creates 50

files and then performs the following action in a loop
50 times. In each loop it writes 8KB to each file from
start to end. Every nth iteration (4th in our implemen-
tation), the program forks a helper program that reads
a byte from each of the 50 files and communicates the
character to the main program via a pipe. This simulates
the behaviour of a web server opening a new connection
on a socket. In the causality based algorithms, once the
main process reads from the pipe, it is a causally differ-
ent version as it has read data from a new source, i.e.,
a new process. Hence any writes the main process per-
forms after that creates a new version of the file. For
this workload, OC does not copy any data in its version
files; all the files were just created, so it considers all
the writes to happen to version 1 of the files. CA and
GF copy data to the version files on the iterations dur-
ing which the the parent spawns a child and reads from
the pipe. This stores 470.5MB of version data. The
ALL algorithm copies data on every write and this adds
up to around 2GB of data. The amount of version data is
shown in Table 7.

We then recover versions at various intervals to get a
sense for how expensive it is to go back further in time in
each algorithm. There are 12 causality events in all, cor-
responding to the number of times a child is forked. We
measure the time taken to recover data to a state before
the 11th, 7th, and the 3rd event. The 11th corresponds to
recovery close to the latest version, the 7th corresponds
to recovery two thirds of the way back, and the 3rd cor-
responds to recovery close to one third of the way back.
The results of this benchmark are shown in Table 7. With
OC, there are no intermediate versions, so it cannot re-
cover anything useful. CA and GF can both recover to
a correct version and they both take the same amount of
time to recover. They also read only the exact amount
of data to be recovered. ALL, however, takes at least 9
times longer than CA and GF to perform recovery, be-
cause it has more data and has to search through a large
amount of data to rebuild the correct version. Further,
ALL has many more false positives that it has to filter be-
fore deciding on the version to recover. CA and GF have
only one version to choose. Since ALL has been version-
ing continuously, one version of a process has multiple

children. For example, the 3rd causal event has 41,000
children from which it has to narrow down to 50 ver-
sions. CA and GF have only 50 children for that causal
event. Note that the numbers presented in the table do not
include the time used to identify the version to recover.

6.3 Results Summary
In most cases, CA introduces little overhead relative to
OC, yet it provides versions in cases where OC fails
to do so. GF performs comparably in many cases, but
sometimes imposes high run time overheads. Version-
on-every-write practically always performs poorly both
in terms of space and elapsed time. For recovery, how-
ever, CA and GF can indeed be a big win in terms of both
the time to recover a particular version and the amount of
data lost.

7 Related work

Several prior research projects have built versioning sys-
tems. We categorize these systems by the version-
ing algorithm that they use and discuss each class in
turn. We begin with the version-on-every-write systems.
CVFS [24] was designed with security in mind. Each in-
dividual write or small metadata change (e.g., atime up-
dates) is versioned. The research focuses on methods to
store and access old versions efficiently. We adopted the
CVFS approach of using a journal to store old version
data. Wayback [3] is a user-level versioning file sys-
tem built on the FUSE framework. On a write call,
Wayback logs the data being overwritten to an undo log
before completing the write. Our version file format is
similar to that of Wayback, but Wayback versions on ev-
ery write while we version more selectively. The Re-
pairable file system (RFS) [29] has functionality closest
to ours. They record both causal data and save versions.
They, however, collect causal data and data blocks sep-
arately, thus preventing them from taking advantage of
causal information to version more selectively, leading
to versioning on every write. They also have to reconcile
the causal and versioning data using timestamps as they
collect them separately.

Now we discuss systems that use open-close version-
ing. Elephant [18] is a versioning file system imple-
mented in the FreeBSD 2.2.8 kernel. Their research fo-
cus is on providing users with a range of version reten-
tion policies. Versionfs [10] is a stackable versioning file
system. Versionfs allows users to selectively version files
and is focused on the ability to set space reclamation and
version storage policies for files. Retention/reclamation
policies are complementary to our work.

As we discussed in section 1, snapshots are another ap-
proach for versioning where an image of a file system is

made periodically. Systems with snapshot functionality
include AFS [13], Plan-9 [16], WAFL [9], [6], Venti [17],
Ext3COW [15], Thresher [21], and Selective versioning
secure disk system [27]. Skippy [20] proposes metadata
indexing schemes that can be used to quickly lookup pre-
vious snapshots of a database.

Several systems have used causal data to provide var-
ious functions. The Taser intrusion recovery system [7]
logs all system calls and their arguments. In the event of
administrative errors or intrusions, they perform causal
analysis on the logged data to determine the actions that
need to be done to recover the system. They explore vari-
ous algorithms and policies that can be used to determine
the exact operations to be performed during recovery.
We can leverage all of these algorithms and policies in
our work, applying them in an online setting. As future
work, they plan to integrate their work with versioning
file systems to reduce the disk space requirements and to
improve scalability. Our work has continued where Taser
stopped and has taken a step further by integrating both
causal and versioning systems. BackTracker [11] logs
all system calls and in the event of an intrusion, performs
causality analysis to determine the root cause of an in-
trusion. Autobash [26] is a configuration debugging tool
that leverages causal information to limit the amount of
testing required.

Chapman et.al. [5], explore techniques for causal data
pruning. Their approach for pruning is to remove dupli-
cates (which we already perform) and factor out common
subtrees in causal graphs. Another approach for prun-
ing causality could be to merge the causal information of
deleted temporary files into their causal ancestors. Space
can also be reclaimed by deleting the versioning data of
temporary files, where temporary files are intermediate
nodes in a causal graph.

Finally, a number of versioning algorithms have been
explored by the object oriented database (OODB) com-
munity. These algorithms are focused on aspects that
are particular to OODBs such as “how to propagate ver-
sion changes of sub objects to composite objects?”, “how
to present a consistent view in the face of updates to
different objects?” [4], “how to version classes as they
change” [28], etc.

8 Conclusions

Combining versioning and causal relationship data offers
powerful capabilities above and beyond what each kind
of system can do in isolation. Causality-based versioning
ensures that we create meaningful versions of objects,
facilitating better recovery from data-corrupting activi-
ties under concurrent workloads. While versioning in-
troduces overheads between 1% and 25%, adding causal
collection on top of versioning adds only an additional

5–6% overhead. The Cycle-Avoidance algorithm, which
restricts itself to considering only per-object, local in-
formation during online operation provides superior ver-
sioning and recovery, at cost comparable to open-close.

Providing versioning in the context of PASS opens up
future research possibilities in the areas of reproducibil-
ity and archival. PASS did not previously provide the
ability to reproduce objects on the system, because they
do not preserve all the necessary data. However, with
versioning, the necessary data do exist. Versioning also
produces objects that can easily be archived, and PASS
provides the provenance to accurately describe those ob-
jects.

9 Acknowledgments

We thank Ethan Miller, our shepherd, and Margo Seltzer
for repeated careful and thoughtful reviews of our pa-
per. We thank Erez Zadok, Shankar Pasupathy, Jonathan
Ledlie, and Uri Braun for their feedback on early drafts
of the paper. We also thank Uri for validating the CA al-
gorithm in our user level simulator. We thank the FAST
reviewers for the valuable feedback they provided. This
work was partially made possible thanks to NSF grant
CNS-0614784.

References
[1] ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W.,

AND LIPMAN, D. J. Basic local alignment search tool. Molecu-
lar Biology 215 (1990), 403–410.

[2] BRAUN, U., GARFINKEL, S., MUNISWAMY-REDDY, K.-K.,
HOLLAND, D. A., AND SELTZER, M. Issues in automatic prove-
nance collection. In Proceedings of the 2006 International Prove-
nance and Annotation Workshop (May 2006).

[3] BRIAN CORNELL AND PETER DINDA AND FABIN BUSTA-
MANTE. Wayback: A User-level Versioning File System for
Linux. In Proceedings of the USENIX 2004 Annual Technical
Conference, FREENIX Track (2004).

[4] CELLARY, W., AND JOMIER, G. Consistency of versions in
objects-oriented databases. In Proceedings of the Sixteenth In-
ternational Conference on Very Large Databases (1990).

[5] CHAPMAN, A. P., JAGADISH, H. V., AND RAMANAN, P. Ef-
ficient provenance storage. In SIGMOD ’08: Proceedings of the
2008 ACM SIGMOD international conference on Management of
data (New York, NY, USA, 2008), ACM, pp. 993–1006.

[6] CHUTANI, S., ANDERSON, O. T., KAZAR, M. L., LEVERETT,
B. W., MASON, W. A., AND SIDEBOTHAM, R. N. The Episode
file system. In Proceedings of the USENIX Winter 1992 Technical
Conference (San Francisco, CA, 1992), pp. 43–60.

[7] GOEL, A., PO, K., FARHADI, K., LI, Z., AND DE LARA, E.
The Taser intrusion recovery system. In SOSP (2005).

[8] HALCROW, M. A. eCryptfs: An enterprise-class encrypted
filesystem for linux. Ottawa Linux Symposium (2005).

[9] HITZ, D., LAU, J., AND MALCOLM, M. File System Design for
an NFS File Server Appliance. In Proceedings of the USENIX
Winter Technical Conference (January 1994), pp. 235–245.

[10] K. MUNISWAMY-REDDY AND C. P. WRIGHT AND A. HIMMER
AND E. ZADOK. A Versatile and User-Oriented Versioning File
System. In Proceedings of the Third USENIX Conference on File
and Storage Technologies (FAST 2004) (March/April 2004).

[11] KING, S. T., AND CHEN, P. M. Backtracking Intrusions. In
SOSP (Bolton Landing, NY, October 2003).

[12] KING, S. T., MAO, Z. M., LUCCHETTI, D. G., AND CHEN,
P. M. Enriching intrusion alerts through multi-host causality. In
the 12th Annual Network and Distributed System Security Sym-
posium (2005).

[13] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected op-
eration in the Coda file system. In Thirteenth ACM Symposium
on Operating Systems Principles (1991).

[14] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U.,
AND SELTZER, M. Provenance-aware storage systems. In Pro-
ceedings of the 2006 USENIX Annual Technical Conference.

[15] PETERSON, Z., AND BURNS, R. Ext3cow: A time-shifting file
system for regulatory compliance. ACM Transactions on Storage
1, 2 (2005), 190–212.

[16] QUINLAN, S. A Cached WORM File System. Software – Prac-
tice and Experience 21, 12 (1991), 1289–1299.

[17] QUINLAN, S., AND DORWARD, S. Venti: a new approach to
archival storage. In Proceedings of First USENIX conference on
File and Storage Technologies (January 2002), pp. 89–101.

[18] SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C., VEITCH,
A. C., CARTON, R., AND OFIR, J. Deciding When to Forget
in the Elephant File System. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (December 1999).

[19] SHAH, S., SOULES, C. A. N., GANGER, G. R., AND NOBLE,
B. D. Using provenance to aid in personal file search. In Pro-
ceedings of the USENIX Annual Technical Conference (2007).

[20] SHAULL, R., SHRIRA, L., AND XU, H. Skippy: a new snapshot
indexing method for time travel in the storage manager. In Pro-
ceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA).

[21] SHRIRA, L., AND XU, H. Thresher: An efficient storage man-
ager for copy-on-write snapshots. In Proceedings of the Usenix
Annual Technical Conference (Boston, MA, May 2006).

[22] SIMMHAN, Y. L., PLALE, B., AND GANNON, D. A survey of
data provenance in e-science. SIGMOD Rec. 34, 3 (2005), 31–36.

[23] SOMAYAJI, A., AND FORREST, S. Automated Response Using
System-Call Delays. In USENIX Security Symposium (2000).

[24] SOULES, C. A. N., GOODSON, G. R., STRUNK, J. D., AND
GANGER, G. R. Metadata Efficiency in Versioning File Sys-
tems. In Proceedings of the 2nd USENIX Conference on File and
Storage Technologies (March 2003), pp. 43–58.

[25] Apache httpd 1.3 vulnerabilities. http://httpd.apache.
org/security/vulnerabilities_13.html.

[26] SU, Y.-Y., ATTARIYAN, M., AND FLINN, J. Autobash: im-
proving configuration management with operating system causal-
ity analysis. In SOSP ’07: Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles (New
York, NY, USA, 2007), ACM, pp. 237–250.

[27] SUNDARARAMAN, S., SIVATHANU, G., AND ZADOK, E. Se-
lective versioning in a secure disk system. In Proceedings of the
17th USENIX Security Symposium (July-August 2008).

[28] TALENS, G., OUSSALAH, C., AND COLINAS, M. F. Versions
of simple and composite objects. In VLDB ’93: Proceedings of
the 19th International Conference on Very Large Data Bases (San
Francisco, CA, USA, 1993).

[29] ZHU, N., AND CHIUEH, T.-C. Design, implementation, and
evaluation of repairable file service. In The International Confer-
ence on Dependable Systems and Networks (2003).

